Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Body Fights to Control Spread of Cancer

09.01.2007
Scientists at the University of Liverpool have found how two molecules fight in the blood to control the spread of cancer cells.

Researchers discovered that a large protein, which forms a protective shield around cancer cells and prevents them from causing secondary tumours, is attacked by a small protein that exists in the blood.

In diseases such as breast, lung and colorectal cancer, infected cells lose growth control and eventually form tumours at these sites. If caught early these tumours can be effectively removed surgically. However, when the cancer cells have invaded the blood, the effectiveness of surgery is reduced.

Cancerous cells that have entered the blood, however, are still prevented from causing further disease by the protective shield of a protein called MUC1 in which the cancerous cells are eventually destroyed by our immune system. Scientists have now discovered how this protective shield is broken down, allowing cancer to spread throughout the body.

... more about:
»cancer cells »protective »tumours

Dr Lu-Gang Yu, from the University’s School of Clinical Sciences, explains: “MUC1 on the cell surface prevents the cancer cells from attaching to the blood vessel wall which causes secondary tumours. We have discovered that a small protein called galectin-3, attacks MUC1 and breaks up its protective shield, forcing large areas of the cancer cell to become exposed. The exposed areas of the cell allow the cancer to attach to the blood vessel wall. The cancer cells then eventually penetrate the blood wall to form tumours at secondary sites.

“The attachment of cancer cells to the blood vessel wall is one of the key steps in the spread of cancer. It has been known for a few years that galectin-3 concentration is significantly higher in the blood of cancer patients than in healthy people but until now scientists did not know whether this increase played any role in the spread of cancer. Our study indicates that galectin-3 may play a critical role and may have significant implications for future developments of drugs for the treatment of the disease.”

Dr Yu’s work is published in the Journal of Biological Chemistry.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

Further reports about: cancer cells protective tumours

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>