Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Renegade RNA -- Clues to cancer and normal growth

Researchers at Johns Hopkins have discovered that a tiny piece of genetic code apparently goes where no bit of it has gone before, and it gets there under its own internal code.

A report on the renegade ribonucleic acid, and the code that directs its movement, will be published Jan. 5 in Science.

MicroRNAs, already implicated in cancer and normal development, latch on to and gum up larger strands of RNA that carry instructions for making the proteins that do all the cell's work. They are, says Joshua Mendell, M.D., Ph.D., an assistant professor in the McKusick-Nathans Institute of Genetic Medicine at Hopkins, like "molecular rheostats that fine-tune how much protein is being made from each gene."

That's why normally microRNAs always have appeared to stick close to the cell's protein-making machinery.

... more about:
»Mendell »MicroRNA »Nucleus »RNA »miR-29b

But during a survey of more than 200 of the 500 known microRNAs found in human cells, Mendell's team discovered one lone microRNA "miles away" --- in cellular terms --- from all the others.

"It was so clearly in the wrong place at the wrong time for what we thought it was supposed to be doing that we just had to figure out why," says Hun-Way Hwang, a graduate student in human genetics and contributor to the study.

Consisting of only 20 to 25 nucleotide building blocks (compared to other types of RNA that can be thousands of nucleotides long), each microRNA has a different combination of blocks. Mendell's team realized that six building blocks at the end of the wayward miR-29b microRNA were noticeably different from the ends of other microRNAs.

Suspicious that the six-block end might have something to do with miR-29b's location, the researchers chopped them off and stuck them on the end of another microRNA. When put into cells, the new microRNA behaved just like miR-29b, wandering far away from the cell's protein-making machinery and into the nucleus, where the cell's genetic material is kept.

The researchers then stuck the same six-block end onto another type of small RNA, a small-interfering RNA or siRNA that turns off genes. This also forced the siRNA into the nucleus.

According to Mendell, these results demonstrate for the first time that despite their tiny size, microRNAs contain elements consisting of short stretches of nucleotide building blocks that can control their behavior in a cell. Mendell hopes to take advantage of the built-in "cellular zip code" discovered in miR-29b as an experimental tool. For example, he plans to force other microRNAs and siRNAs into the nucleus to turn off specific sets of genes.

Mendell's team is actively hunting for additional hidden microRNA elements that control other aspects of their behavior in cells. They also are curious to figure out what miR-29b is doing in the nucleus. Because microRNAs have been implicated in cancer as well as normal development, Mendell hopes that further study of miR-29b will reveal other, hidden functions of microRNAs.

Audrey Huang | EurekAlert!
Further information:

Further reports about: Mendell MicroRNA Nucleus RNA miR-29b

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>