Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Little Molecule that Causes an Identity Crisis in the Skin

08.01.2007
One single molecule determines how stem cells in the hair follicle develop. A study at the Sahlgrenska Academy at Göteborg University in Sweden has shown that cells that should give rise to hair can instead give rise to mammary gland cells in mice who lack this molecule.

The study will be published MOnday January 14 in the prestigious medical journal Developmental Cell.

This molecule is part of a complex signalling system known as the "Hedgehog pathway". This signalling system controls the development of many different organs.

"If we can find out more about how the signalling system regulates the behaviour of stem cells, we may be able to develop new treatments for not only hair loss but also for cancer", says Amel Gritli-Linde, associate professor in oral biochemistry at the Sahlgrenska Academy.

... more about:
»Amel »Gritli-Linde »Hedgehog »mammary »signalling

The signalling system consists of chain reactions in which several proteins together control the behaviour of cells. The study has shown that the Hedgehog system is responsible for stem cells in skin being given the signal that allows them to develop into a certain type of cell. The molecule that has been studied is called "Smoothened", and it forms a link in the chain of information. If Smoothened is missing, the information never reaches the nucleus of the cell.

The study used transgenic mice that lacked the molecule in parts of their skin.

"The stem cells at the hair follicles normally lie in special small niches in the tissue, but the transgenic mice lack these protective niches. The stem cells that should have become hair develop instead into cells from the mammary gland", says Amel Gritli-Linde.

Previous work has shown that intensive Hedgehog signalling can lead to cancer. The new study shows that raised signalling activity can also prevent the formation of mammary glands. It is Hedgehog signalling that determines whether hair or breast tissue is formed.

It's not unusual that researchers in odontology study skin and hair follicles. The hair that is formed in the follicles develops in a way that is similar to the way that teeth develop in tooth buds.

"We gain a lot of information as dentists, studying the mechanisms of hair development. It's not impossible that we will be able to get hair stem cells to form new teeth. Millions of people all over the world may be able to obtain new teeth," says Amel Gritli-Linde.

The study has been carried out in collaboration with researchers in the USA and Great Britain.

Journal: Developmental Cell.
Article title: Abnormal hair development and apparent follicular transformation to mammary gland in the absence of Hedgehog signaling.

AUTHORS: Amel Gritli-Linde, Kristina Hallberg, Brian D. Harfe, Azadeh Reyahi, Marie Kannius-Janson, Jeanette Nilsson, Martyn T. Cobourne, Paul T. Sharpe, Andrew P. McMahon och Anders Linde.

For more information contact: Associate professor Amel Gritli-Linde, telephone: +46 31 786 3392, e-mail: amel@odontologi.gu.se

Elin Lindström Claessen | idw
Further information:
http://www.developmentalcell.com/
http://www.vr.se

Further reports about: Amel Gritli-Linde Hedgehog mammary signalling

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>