Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale Cubes and Spheres

08.01.2007
Uniform porous silicon oxide nano-objects formed by controlled disassembly of a lattice structure

Porous nano-objects with defined sizes and structures are particularly interesting, for example, as capsules for enzymes, a means of transport for pharmaceutical agents, or building blocks for larger nanostructures. The production of such tiny, three-dimensional objects in a targeted and controlled manner—and as simply and efficiently as possible—remains a challenge for scientists.

At the University of Minnesota, a team led by Andreas Stein has now developed an interesting new process for the production of nanoscopic cubes and spheres of silicon dioxide. The researchers reported their trick in Angewandte Chemie: Instead of building their particles from smaller units, they used the controlled disassembly of larger, lattice-like structures.

Most conventional methods for the production of porous silicon dioxide nanoparticles suffer from the fact that the growing particles tend to aggregate (clump together), making it difficult to achieve a uniform size. The shape of the particles can hardly be influenced at all. Stein and his team chose a backward approach, first building up a lattice structure of silicon dioxide and then disassembling it to get the shape they wanted. The “moulds” used for the lattice were tiny spheres of a plastic called polymethylmethacrylate (PMMA), which assemble themselves through “closest packing of spheres” into a colloidal crystal. Between the spheres in this structure, there are little, nearly tetrahedral and nearly octahedral spaces. The researchers filled these cavities with a solution containing an organosilicon compound, oxalic acid, and a surfactant.

... more about:
»Silicon »controlled »dioxide »lattice

This mixture hardens into a solid gel. The plastic spheres and surfactant are then burned off by heating. The surfactant leaves behind tiny pores, and the gelled organosilicon compound slowly converts to a solid silicon oxide. What remains initially is a silicate lattice that is the negative of the packed spheres: tiny tetrahedra and octahedra attached to each other by delicate bridges. As the conversion to silicon dioxide continues, the structure shrinks until it breaks at the weakest points—the bridges. The fragments formed by this process are shaped like octahedra or smaller tetrahedra. These continue to contract until the octahedra become nearly cubic and the tetrahedra become nearly spherical, making highly uniform structures with worm-like pores.

By varying the colloidal crystals used as the mould, the size and shape of the resulting particles can be controlled. Through vapor deposition or polymer grafting, other compounds can be added to the structure. Subsequent etching away of the silicon oxide allows this new technique to be used as a starting point for nanostructures made of other materials.

Andreas Stein | EurekAlert!
Further information:
http://www.chem.umn.edu

Further reports about: Silicon controlled dioxide lattice

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>