Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale Cubes and Spheres

08.01.2007
Uniform porous silicon oxide nano-objects formed by controlled disassembly of a lattice structure

Porous nano-objects with defined sizes and structures are particularly interesting, for example, as capsules for enzymes, a means of transport for pharmaceutical agents, or building blocks for larger nanostructures. The production of such tiny, three-dimensional objects in a targeted and controlled manner—and as simply and efficiently as possible—remains a challenge for scientists.

At the University of Minnesota, a team led by Andreas Stein has now developed an interesting new process for the production of nanoscopic cubes and spheres of silicon dioxide. The researchers reported their trick in Angewandte Chemie: Instead of building their particles from smaller units, they used the controlled disassembly of larger, lattice-like structures.

Most conventional methods for the production of porous silicon dioxide nanoparticles suffer from the fact that the growing particles tend to aggregate (clump together), making it difficult to achieve a uniform size. The shape of the particles can hardly be influenced at all. Stein and his team chose a backward approach, first building up a lattice structure of silicon dioxide and then disassembling it to get the shape they wanted. The “moulds” used for the lattice were tiny spheres of a plastic called polymethylmethacrylate (PMMA), which assemble themselves through “closest packing of spheres” into a colloidal crystal. Between the spheres in this structure, there are little, nearly tetrahedral and nearly octahedral spaces. The researchers filled these cavities with a solution containing an organosilicon compound, oxalic acid, and a surfactant.

... more about:
»Silicon »controlled »dioxide »lattice

This mixture hardens into a solid gel. The plastic spheres and surfactant are then burned off by heating. The surfactant leaves behind tiny pores, and the gelled organosilicon compound slowly converts to a solid silicon oxide. What remains initially is a silicate lattice that is the negative of the packed spheres: tiny tetrahedra and octahedra attached to each other by delicate bridges. As the conversion to silicon dioxide continues, the structure shrinks until it breaks at the weakest points—the bridges. The fragments formed by this process are shaped like octahedra or smaller tetrahedra. These continue to contract until the octahedra become nearly cubic and the tetrahedra become nearly spherical, making highly uniform structures with worm-like pores.

By varying the colloidal crystals used as the mould, the size and shape of the resulting particles can be controlled. Through vapor deposition or polymer grafting, other compounds can be added to the structure. Subsequent etching away of the silicon oxide allows this new technique to be used as a starting point for nanostructures made of other materials.

Andreas Stein | EurekAlert!
Further information:
http://www.chem.umn.edu

Further reports about: Silicon controlled dioxide lattice

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>