Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging techniques permit scientists to follow a day -- or four -- in the life of a cell

08.01.2007
Methods to visualize live cells are highlighted in the current release of Cold Spring Harbor Protocols

The movement and growth of cells are critical for normal physiological processes, and--when perturbed--can result in negative outcomes such as tumor formation. Understanding how live cells function is therefore invaluable for molecular and cellular biologists, and advanced techniques to visualize cells in action are of great importance.

The current issue of Cold Spring Harbor Protocols (www.cshprotocols.org) addresses these concerns with two freely accessible protocols: one for inserting 'reporter' proteins into cells to monitor what's going on inside, and another for maintaining the cells under a microscope for long-term observation.

The first protocol, available at

... more about:
»Microscope »technique
http://www.cshprotocols.org/cgi/content
/full/2007/1/pdb.prot4657, details a procedure to inject proteins into individual cells. The injected protein can be fluorescently labeled, so scientists can track the glowing protein with a microscope and observe what it's doing and where it's going inside the cell. This microinjection technique is similar to those that are used to create cloned and transgenic organisms, and it can also be applied to more complex assays--including laser photobleaching and fluorescent speckle microscopy--that yield specific insights into cellular processes.

A second freely available protocol

(http://www.cshprotocols.org/cgi/content/full/2007/1/pdb.prot4660) outlines the construction and use of an enclosed microscope chamber. This device is designed to optimize the culture environment for cells--allowing them to grow as they would normally--while optimizing the conditions for viewing them by microscopy. This enables researchers to monitor the cells under a microscope for long time periods (in excess of four days), during which the cells may divide multiple times and cycle through nearly all cellular functions. When coupled with the latest in image-analysis software, this technique allows researchers to gain a long-term perspective on events in the lives of cells.

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: Microscope technique

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>