Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging techniques permit scientists to follow a day -- or four -- in the life of a cell

08.01.2007
Methods to visualize live cells are highlighted in the current release of Cold Spring Harbor Protocols

The movement and growth of cells are critical for normal physiological processes, and--when perturbed--can result in negative outcomes such as tumor formation. Understanding how live cells function is therefore invaluable for molecular and cellular biologists, and advanced techniques to visualize cells in action are of great importance.

The current issue of Cold Spring Harbor Protocols (www.cshprotocols.org) addresses these concerns with two freely accessible protocols: one for inserting 'reporter' proteins into cells to monitor what's going on inside, and another for maintaining the cells under a microscope for long-term observation.

The first protocol, available at

... more about:
»Microscope »technique
http://www.cshprotocols.org/cgi/content
/full/2007/1/pdb.prot4657, details a procedure to inject proteins into individual cells. The injected protein can be fluorescently labeled, so scientists can track the glowing protein with a microscope and observe what it's doing and where it's going inside the cell. This microinjection technique is similar to those that are used to create cloned and transgenic organisms, and it can also be applied to more complex assays--including laser photobleaching and fluorescent speckle microscopy--that yield specific insights into cellular processes.

A second freely available protocol

(http://www.cshprotocols.org/cgi/content/full/2007/1/pdb.prot4660) outlines the construction and use of an enclosed microscope chamber. This device is designed to optimize the culture environment for cells--allowing them to grow as they would normally--while optimizing the conditions for viewing them by microscopy. This enables researchers to monitor the cells under a microscope for long time periods (in excess of four days), during which the cells may divide multiple times and cycle through nearly all cellular functions. When coupled with the latest in image-analysis software, this technique allows researchers to gain a long-term perspective on events in the lives of cells.

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: Microscope technique

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>