Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bisexual fruit flies show new role for neurochemical

05.01.2007
Fruit flies' ability to discern one sex from another may depend on the number of receptors on the surface of nerve cells, and the number of receptors is controlled by levels of a ubiquitous brain chemical, University of Illinois at Chicago researchers have found.

Everything from the ability to concentrate, perceive and learn to debilitating illnesses such as amyotrophic lateral sclerosis, muscular dystrophy, post-traumatic stress syndrome and schizophrenia is influenced by the number of receptors on nerve cells. The more receptors each cell has at its communication points, or synapses, the better that messages are carried through the brain.

A UIC research team led by David Featherstone, assistant professor of biological sciences, has discovered that receptor numbers are controlled by the brain's level of glutamate. But it is not the same glutamate that most neuroscientists think about -- the neurotransmitter that moves in message packets across the synapse. Instead, it is what Featherstone calls ambient extracellular glutamate, which just floats around the nervous system and has generally been ignored because no one knew where it came from or what it was doing.

For years, scientists failed to identify glutamate as a key neurotransmitter precisely because there was so much of it.

... more about:
»Ambient »Featherstone »Synapse »glutamate »receptor

"It made no sense," said Featherstone. "People figured you couldn't use glutamate to send messages because there was too much glutamate background noise in the brain. It turns out that this background noise plays an important part in regulating information transfer."

Featherstone and his lab team found that glia cells are the source of the excess ambient glutamate. Along with neurons, these poorly understood "support" cells fill the brain.

The team discovered proteins in fruit fly glia cells that regulate the amount of ambient glutamate in the brain. Called xCT transporter proteins, they pump glutamate out of glia cells.

"When we mutate the protein, we get less ambient extracellular glutamate, more glutamate receptors, and so a stronger transfer of messages at synapses," Featherstone said.

The gene mutation also made the flies bisexual, leading him to name the gene "genderblind."

"The mutants are completely bisexual, but fertile. It's the first gene that really specifically affects homosexual behavior without affecting heterosexual behavior," he said.

"Trying to understand fly bisexuality sounds silly, but these behavioral changes are important evidence that ambient extracellular glutamate and xCT transport proteins play important, unsuspected roles in brain function," Featherstone said. "We think we'll be able to learn a lot about perception and development from figuring out exactly what's happening in these flies.

"It's amazing how many biomedical breakthroughs have come from crazy directions."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Ambient Featherstone Synapse glutamate receptor

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>