Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McBride shows DNA detective work with paper-eating bacteria that ‘glide’

05.01.2007
The eco-friendly fuel ethanol is usually made from grain, but the U.S. Department of Energy (DOE) would like to find other renewable materials that will be cost-effective alternatives, such as paper pulp, sawdust, straw and grain hulls.

A UWM professor recently helped DOE do just that by analyzing the DNA of a bacterium that can break down cellulose, the major structural component of plants that is also found in forestry by-products (including paper) and waste feedstocks.

Mark McBride, a professor of biological sciences, worked with DOE’s Joint Genome Institute and scientists at Los Alamos National Laboratory to examine the genes of Cytophaga hutchinsonii that are responsible for the organism’s ability to digest cellulose – the first step in the carbohydrate’s conversion into ethanol.

Sequencing the genome of C. hutchinsonii provides what McBride calls a “parts list” for the microbe, allowing scientists to explore how bacteria use these parts to build and run their key functions – some of which have potential uses in bioenergy.

The genome has revealed surprises, he says.

“Microorganisms typically require two kinds of enzymes to efficiently break down cellulose,” he says. “One type cuts the long carbohydrate molecule through the middle, while another chews small pieces from the ends.”

Not so with C. hutchinsonii. Although it efficiently digests cellulose, in DNA analysis it appears to be lacking one of the usual enzymes, suggesting that it may use either a novel strategy or novel enzymes.

The information McBride reports could help DOE devise mixtures of microorganisms or enzymes that will more efficiently convert cellulose into glucose, and finally into ethanol.

McBride’s interest in C. hutchinsonii goes beyond its possible value in bioenergy.

What really intrigues him is that it’s a “gliding bacterium,” able to crawl rapidly over surfaces by an unknown mechanism, which is the main subject of McBride’s research with another glider called Flavobacterium johnsoniae. The two microbes are not closely related.

“You are more closely related to a fruit fly than these two organisms are to each other,” he says.

However, from analysis of genes from the two bacteria, McBride suspects that they use the same basic machinery to move.

And there may be another connection. F. johnsoniae doesn’t eat cellulose, but it is able to digest a similar carbohydrate polymer, chitin. Like cellulose, chitin, which is found in the hard shells of lobsters and insects, is also difficult to break down.

McBride hypothesizes that digestion of cellulose and chitin may also be linked to cell movement, or motility.

“Loss of motility results in loss of ability to digest chitin,” he says. “This suggests that motility and digestion of some carbohydrate polymers may be connected in both gliding microbes.”

McBride and his students have used F. johnsoniae to study the motility of gliding bacteria for more than a decade. They cloned “mutants” of F. johnsoniae that are unable to move, and then attempted to “repair” them by inserting certain pieces of DNA.

In this way, they have uncovered nearly all the genetic components that propel the cells. It has been a long process. A decade ago, his lab had found one protein involved. He now knows of 24, and he doesn’t expect to find many more.

Until recently, McBride was not able to image the bacteria closely enough to see the structures involved in movement. Instead, he bonded latex spheres to the surface of F. johnsoniae cells and observed that they moved in all directions around the cell’s perimeter.

“The cell wall appears to have a series of moving conveyer belts,” he says.

He also has learned that some of the motility proteins (“parts”) act at the surface of the cell, and he thinks some are involved in forming nearly invisible filaments around the perimeter of the cell.

These filaments were recently imaged in collaboration with Sriram Subramaniam and Jun Liu at the National Institutes of Health by cryo-electron tomography.

“The filaments may be the cell’s ‘tires,’ and there are different kinds,” McBride says. “They are designed to help the organism move over a variety of surfaces, like an all-terrain vehicle.”

Besides providing movement, McBride says the filaments also may be needed to move the cellulose and chitin molecules to certain sites where they can be digested or taken into the cell.

McBride hopes the complete genome for C. hutchinsonii will yield other clues to the interconnections among gliding bacteria. He is now collaborating with DOE to sequence the entire genome of F. johnsoniae, which will allow a full comparison of the genes of the two microorganisms.

Mark McBride | EurekAlert!
Further information:
http://www.uwm.edu
http://www.uwm.edu/Dept/Biology/Docs/Faculty/mcbride.html

Further reports about: Cellulose DNA DOE McBride filaments hutchinsonii johnsoniae motility

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>