Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McBride shows DNA detective work with paper-eating bacteria that ‘glide’

05.01.2007
The eco-friendly fuel ethanol is usually made from grain, but the U.S. Department of Energy (DOE) would like to find other renewable materials that will be cost-effective alternatives, such as paper pulp, sawdust, straw and grain hulls.

A UWM professor recently helped DOE do just that by analyzing the DNA of a bacterium that can break down cellulose, the major structural component of plants that is also found in forestry by-products (including paper) and waste feedstocks.

Mark McBride, a professor of biological sciences, worked with DOE’s Joint Genome Institute and scientists at Los Alamos National Laboratory to examine the genes of Cytophaga hutchinsonii that are responsible for the organism’s ability to digest cellulose – the first step in the carbohydrate’s conversion into ethanol.

Sequencing the genome of C. hutchinsonii provides what McBride calls a “parts list” for the microbe, allowing scientists to explore how bacteria use these parts to build and run their key functions – some of which have potential uses in bioenergy.

The genome has revealed surprises, he says.

“Microorganisms typically require two kinds of enzymes to efficiently break down cellulose,” he says. “One type cuts the long carbohydrate molecule through the middle, while another chews small pieces from the ends.”

Not so with C. hutchinsonii. Although it efficiently digests cellulose, in DNA analysis it appears to be lacking one of the usual enzymes, suggesting that it may use either a novel strategy or novel enzymes.

The information McBride reports could help DOE devise mixtures of microorganisms or enzymes that will more efficiently convert cellulose into glucose, and finally into ethanol.

McBride’s interest in C. hutchinsonii goes beyond its possible value in bioenergy.

What really intrigues him is that it’s a “gliding bacterium,” able to crawl rapidly over surfaces by an unknown mechanism, which is the main subject of McBride’s research with another glider called Flavobacterium johnsoniae. The two microbes are not closely related.

“You are more closely related to a fruit fly than these two organisms are to each other,” he says.

However, from analysis of genes from the two bacteria, McBride suspects that they use the same basic machinery to move.

And there may be another connection. F. johnsoniae doesn’t eat cellulose, but it is able to digest a similar carbohydrate polymer, chitin. Like cellulose, chitin, which is found in the hard shells of lobsters and insects, is also difficult to break down.

McBride hypothesizes that digestion of cellulose and chitin may also be linked to cell movement, or motility.

“Loss of motility results in loss of ability to digest chitin,” he says. “This suggests that motility and digestion of some carbohydrate polymers may be connected in both gliding microbes.”

McBride and his students have used F. johnsoniae to study the motility of gliding bacteria for more than a decade. They cloned “mutants” of F. johnsoniae that are unable to move, and then attempted to “repair” them by inserting certain pieces of DNA.

In this way, they have uncovered nearly all the genetic components that propel the cells. It has been a long process. A decade ago, his lab had found one protein involved. He now knows of 24, and he doesn’t expect to find many more.

Until recently, McBride was not able to image the bacteria closely enough to see the structures involved in movement. Instead, he bonded latex spheres to the surface of F. johnsoniae cells and observed that they moved in all directions around the cell’s perimeter.

“The cell wall appears to have a series of moving conveyer belts,” he says.

He also has learned that some of the motility proteins (“parts”) act at the surface of the cell, and he thinks some are involved in forming nearly invisible filaments around the perimeter of the cell.

These filaments were recently imaged in collaboration with Sriram Subramaniam and Jun Liu at the National Institutes of Health by cryo-electron tomography.

“The filaments may be the cell’s ‘tires,’ and there are different kinds,” McBride says. “They are designed to help the organism move over a variety of surfaces, like an all-terrain vehicle.”

Besides providing movement, McBride says the filaments also may be needed to move the cellulose and chitin molecules to certain sites where they can be digested or taken into the cell.

McBride hopes the complete genome for C. hutchinsonii will yield other clues to the interconnections among gliding bacteria. He is now collaborating with DOE to sequence the entire genome of F. johnsoniae, which will allow a full comparison of the genes of the two microorganisms.

Mark McBride | EurekAlert!
Further information:
http://www.uwm.edu
http://www.uwm.edu/Dept/Biology/Docs/Faculty/mcbride.html

Further reports about: Cellulose DNA DOE McBride filaments hutchinsonii johnsoniae motility

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>