Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugars in liver found to clear fats from the bloodstream

05.01.2007
Maybe you ate a big, juicy steak for dinner last night, adding a large amount of fat – scientifically known as triglycerides – to your system. For one in ten of us, that could be a big problem.

Although we try to reduce fat in our diet, our bodies use it for energy. But patients with elevated levels of fat in their bloodstream – nearly 10 percent of Americans – are more likely to develop arthrosclerosis, or build-up of plaque in the arteries, which can lead to a heart attack or stroke.

In work with mice, researchers at the University of California, San Diego (UCSD) School of Medicine discovered a factor that could be responsible for many unexplained cases of elevated triglyceride levels.

In humans, this condition can be diabetes-related, diet-induced, or caused by drug interactions or chronic alcohol consumption. The problem can also run in families. But it turns out that another important factor is sugar – a complex one produced by all cells in the body called heparan sulfate, which is related to the anti-coagulant heparin.

The UCSD team found that heparan sulfate in the liver helps the body clear triglycerides from the blood. Their study, published in the January 1 issue of the Journal of Clinical Investigation, suggests that some patients with elevated triglyceride levels could have changes in heparan sulfate in the liver. The discovery could pave the way for new therapies for a major and growing medical problem.

"The work confirms that heparan sulfate in the liver plays a crucial role in clearing fat," said Jeffrey D. Esko, Professor of Cellular and Molecular Medicine at UCSD's School of Medicine. "These molecules clear triglycerides and cholesterol from the blood, working alongside the better known LDL receptors"

The UCSD researchers created a mouse model with a mutation of heparan sulfate, which resulted in elevated triglyceride levels, like those seen in many patients with diabetes. The researchers made mutations in only in the liver, because such mutations throughout all tissues would lead to the death of an embryo or death shortly after birth.

"By selectively mutating a single tissue in mice, in this case the liver, we avoided a lethal effect," said Esko. In the lab, the researchers combined the heparan sulfate mutation with a mutation in the LDL receptor, which has long known to be responsible for clearing cholesterol from the arteries. The UCSD team showed that heparan sulfate is involved in clearing not only triglycerides, but also cholesterol, from the blood.

"The finding, that the LDL receptor plus heparan sulfate work together to clear triglyceride and cholesterol-rich particles from the blood in a healthy person is very exciting," Esko said. The study suggests the possibility that mutations in one of 40 or so genes involved in production of heparan sulfate in the liver could result in high blood-fat levels and lead to complications such as arthrosclerosis, according to Esko.

In animal models with induced diabetes, changes in liver heparan sulfate – consistent with the UCSD researchers' findings – often appear. One of the team's next steps will be to induce diabetes in animals and examine the role of heparan sulfate in more detail.

"Such studies could lead to new drugs that change heparan sulfate in order to lower fat levels in patients," said Esko.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Esko HDL-cholesterol Triglyceride UCSD clear heparan liver sulfate

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>