Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugars in liver found to clear fats from the bloodstream

05.01.2007
Maybe you ate a big, juicy steak for dinner last night, adding a large amount of fat – scientifically known as triglycerides – to your system. For one in ten of us, that could be a big problem.

Although we try to reduce fat in our diet, our bodies use it for energy. But patients with elevated levels of fat in their bloodstream – nearly 10 percent of Americans – are more likely to develop arthrosclerosis, or build-up of plaque in the arteries, which can lead to a heart attack or stroke.

In work with mice, researchers at the University of California, San Diego (UCSD) School of Medicine discovered a factor that could be responsible for many unexplained cases of elevated triglyceride levels.

In humans, this condition can be diabetes-related, diet-induced, or caused by drug interactions or chronic alcohol consumption. The problem can also run in families. But it turns out that another important factor is sugar – a complex one produced by all cells in the body called heparan sulfate, which is related to the anti-coagulant heparin.

The UCSD team found that heparan sulfate in the liver helps the body clear triglycerides from the blood. Their study, published in the January 1 issue of the Journal of Clinical Investigation, suggests that some patients with elevated triglyceride levels could have changes in heparan sulfate in the liver. The discovery could pave the way for new therapies for a major and growing medical problem.

"The work confirms that heparan sulfate in the liver plays a crucial role in clearing fat," said Jeffrey D. Esko, Professor of Cellular and Molecular Medicine at UCSD's School of Medicine. "These molecules clear triglycerides and cholesterol from the blood, working alongside the better known LDL receptors"

The UCSD researchers created a mouse model with a mutation of heparan sulfate, which resulted in elevated triglyceride levels, like those seen in many patients with diabetes. The researchers made mutations in only in the liver, because such mutations throughout all tissues would lead to the death of an embryo or death shortly after birth.

"By selectively mutating a single tissue in mice, in this case the liver, we avoided a lethal effect," said Esko. In the lab, the researchers combined the heparan sulfate mutation with a mutation in the LDL receptor, which has long known to be responsible for clearing cholesterol from the arteries. The UCSD team showed that heparan sulfate is involved in clearing not only triglycerides, but also cholesterol, from the blood.

"The finding, that the LDL receptor plus heparan sulfate work together to clear triglyceride and cholesterol-rich particles from the blood in a healthy person is very exciting," Esko said. The study suggests the possibility that mutations in one of 40 or so genes involved in production of heparan sulfate in the liver could result in high blood-fat levels and lead to complications such as arthrosclerosis, according to Esko.

In animal models with induced diabetes, changes in liver heparan sulfate – consistent with the UCSD researchers' findings – often appear. One of the team's next steps will be to induce diabetes in animals and examine the role of heparan sulfate in more detail.

"Such studies could lead to new drugs that change heparan sulfate in order to lower fat levels in patients," said Esko.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Esko HDL-cholesterol Triglyceride UCSD clear heparan liver sulfate

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>