Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugars in liver found to clear fats from the bloodstream

05.01.2007
Maybe you ate a big, juicy steak for dinner last night, adding a large amount of fat – scientifically known as triglycerides – to your system. For one in ten of us, that could be a big problem.

Although we try to reduce fat in our diet, our bodies use it for energy. But patients with elevated levels of fat in their bloodstream – nearly 10 percent of Americans – are more likely to develop arthrosclerosis, or build-up of plaque in the arteries, which can lead to a heart attack or stroke.

In work with mice, researchers at the University of California, San Diego (UCSD) School of Medicine discovered a factor that could be responsible for many unexplained cases of elevated triglyceride levels.

In humans, this condition can be diabetes-related, diet-induced, or caused by drug interactions or chronic alcohol consumption. The problem can also run in families. But it turns out that another important factor is sugar – a complex one produced by all cells in the body called heparan sulfate, which is related to the anti-coagulant heparin.

The UCSD team found that heparan sulfate in the liver helps the body clear triglycerides from the blood. Their study, published in the January 1 issue of the Journal of Clinical Investigation, suggests that some patients with elevated triglyceride levels could have changes in heparan sulfate in the liver. The discovery could pave the way for new therapies for a major and growing medical problem.

"The work confirms that heparan sulfate in the liver plays a crucial role in clearing fat," said Jeffrey D. Esko, Professor of Cellular and Molecular Medicine at UCSD's School of Medicine. "These molecules clear triglycerides and cholesterol from the blood, working alongside the better known LDL receptors"

The UCSD researchers created a mouse model with a mutation of heparan sulfate, which resulted in elevated triglyceride levels, like those seen in many patients with diabetes. The researchers made mutations in only in the liver, because such mutations throughout all tissues would lead to the death of an embryo or death shortly after birth.

"By selectively mutating a single tissue in mice, in this case the liver, we avoided a lethal effect," said Esko. In the lab, the researchers combined the heparan sulfate mutation with a mutation in the LDL receptor, which has long known to be responsible for clearing cholesterol from the arteries. The UCSD team showed that heparan sulfate is involved in clearing not only triglycerides, but also cholesterol, from the blood.

"The finding, that the LDL receptor plus heparan sulfate work together to clear triglyceride and cholesterol-rich particles from the blood in a healthy person is very exciting," Esko said. The study suggests the possibility that mutations in one of 40 or so genes involved in production of heparan sulfate in the liver could result in high blood-fat levels and lead to complications such as arthrosclerosis, according to Esko.

In animal models with induced diabetes, changes in liver heparan sulfate – consistent with the UCSD researchers' findings – often appear. One of the team's next steps will be to induce diabetes in animals and examine the role of heparan sulfate in more detail.

"Such studies could lead to new drugs that change heparan sulfate in order to lower fat levels in patients," said Esko.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Esko HDL-cholesterol Triglyceride UCSD clear heparan liver sulfate

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>