Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Marathon mice' elucidate little-known muscle type

05.01.2007
Researchers report in the January issue of the journal Cell Metabolism, published by Cell Press, the discovery of a genetic "switch" that drives the formation of a poorly understood type of muscle. Moreover, they found, animals whose muscles were full of the so-called IIX fibers were able to run farther and at higher work loads than normal mice could.

The findings could ultimately lead to novel drugs designed to change the composition of muscle, the researchers said. Such treatments might have the potential to boost physical strength and endurance in patients with a variety of muscle wasting conditions.

The research team, led by Bruce Spiegelman of Harvard Medical School, found that increasing activity of the gene known as PGC-1â in the skeletal muscles of mice caused them to become crowded with IIX muscle fibers, which are normally much less prevalent.

"One reason why less is known about IIX fibers is that no one muscle group is packed with them," Spiegelman said. "For the first time, we have a mouse model very enriched in IIX fibers. These mice show a greatly increased capacity to sustain physical activity."

... more about:
»Condition »IIX »MHC »PGC-1â »Spiegelman »fiber »skeletal muscle

Skeletal muscle converts chemical energy into motion and force, ranging from rapid and sudden bursts of intense activity to continuous low-intensity work, the researchers said. At one functional extreme, muscles such as the soleus--a broad, flat muscle found in the calf of the leg--perform slow but steady activities such as maintaining posture. At the other extreme, muscles such as the quadriceps typically perform intense and rapid activities.

To fulfill these varied roles, muscles vary in their proportion of "slow-twitch" muscle fibers (types I and IIA), ideal for slow and constant roles, and "fast-twitch" fibers (type IIB), better suited to rapid and sudden activity of shorter duration. The fiber types are defined by which "myosin heavy chains" (MHCs) they contain and by their metabolic capacity, a feature largely determined by the number of energy-producing mitochondria they house. Myosins are motor proteins that consist of both "heavy" and "light" amino acid chains.

While most muscles in mammals contain a mixture of slow- and fast-twitch fiber types, some muscle beds are enriched for one type or the other, Spiegelman said. However, adult skeletal muscles also contain fibers with an abundance of a fourth MHC, type IIX, about which much less is known.

IIX fibers seem to have the oxidative metabolism of slow-twitch fibers mixed with the biophysical properties of fast-twitch fibers. Oxidative metabolism is by far the most efficient way of generating energy, Spiegelman said.

In the current study, the researchers produced mice with higher than normal levels of the transcriptional coactivator PGC-1â in their skeletal muscles. Transcriptional coactivators work with other cellular factors and machinery to control the activity of other genes. While earlier studies had found that the related coactivator PGC-1â plays a role in determining muscle type, the role of PGC-1â wasn't known.

"The muscle from the PGC-1â transgenic mice was strikingly redder in appearance than wild-type controls," indicative of their increased mitochondrial content, the researchers now report. Upon further examination, the researchers were surprised to find that the fibers showed a reduction in I, IIA, and IIB MHCs and as much as a 5-fold increase in IIX MHC.

Nearly 100% of muscle fibers in the transgenic animals contained abundant MHC IIX mRNA and protein, they found, as compared to only 15%–20% in normal animals. PGC-1â also changed the muscles' metabolic characteristics by driving the activity of genes that spark proliferation of mitochondria.

The PGC-1â animals with more IIX muscle fibers showed a greater capacity for aerobic exercise, they found. Transgenic mice were able to run, on average, for 32.5 min to exhaustion, compared to 26 min for their normal littermates, Spiegelman's group reported.

"These data have potential importance for the therapy of a number of muscular and neuromuscular diseases in humans," Spiegelman's group concluded.

"Many conditions accompanied by loss of physical mobility, including paraplegia, prolonged bed rest, and muscular dystrophies, involve a loss of oxidative fibers and their replacement with glycolytic fibers. This, in turn, results in a further loss of resistance to fatigue, exacerbating the patient's condition in a downward spiral. The identification of PGC-1â as a potential mediator of the development of oxidative type IIX fibers suggests new ways to modulate muscle fiber type in health and disease."

Erin Doonan | EurekAlert!
Further information:
http://www.cellmetabolism.org

Further reports about: Condition IIX MHC PGC-1â Spiegelman fiber skeletal muscle

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>