Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Marathon mice' elucidate little-known muscle type

05.01.2007
Researchers report in the January issue of the journal Cell Metabolism, published by Cell Press, the discovery of a genetic "switch" that drives the formation of a poorly understood type of muscle. Moreover, they found, animals whose muscles were full of the so-called IIX fibers were able to run farther and at higher work loads than normal mice could.

The findings could ultimately lead to novel drugs designed to change the composition of muscle, the researchers said. Such treatments might have the potential to boost physical strength and endurance in patients with a variety of muscle wasting conditions.

The research team, led by Bruce Spiegelman of Harvard Medical School, found that increasing activity of the gene known as PGC-1â in the skeletal muscles of mice caused them to become crowded with IIX muscle fibers, which are normally much less prevalent.

"One reason why less is known about IIX fibers is that no one muscle group is packed with them," Spiegelman said. "For the first time, we have a mouse model very enriched in IIX fibers. These mice show a greatly increased capacity to sustain physical activity."

... more about:
»Condition »IIX »MHC »PGC-1â »Spiegelman »fiber »skeletal muscle

Skeletal muscle converts chemical energy into motion and force, ranging from rapid and sudden bursts of intense activity to continuous low-intensity work, the researchers said. At one functional extreme, muscles such as the soleus--a broad, flat muscle found in the calf of the leg--perform slow but steady activities such as maintaining posture. At the other extreme, muscles such as the quadriceps typically perform intense and rapid activities.

To fulfill these varied roles, muscles vary in their proportion of "slow-twitch" muscle fibers (types I and IIA), ideal for slow and constant roles, and "fast-twitch" fibers (type IIB), better suited to rapid and sudden activity of shorter duration. The fiber types are defined by which "myosin heavy chains" (MHCs) they contain and by their metabolic capacity, a feature largely determined by the number of energy-producing mitochondria they house. Myosins are motor proteins that consist of both "heavy" and "light" amino acid chains.

While most muscles in mammals contain a mixture of slow- and fast-twitch fiber types, some muscle beds are enriched for one type or the other, Spiegelman said. However, adult skeletal muscles also contain fibers with an abundance of a fourth MHC, type IIX, about which much less is known.

IIX fibers seem to have the oxidative metabolism of slow-twitch fibers mixed with the biophysical properties of fast-twitch fibers. Oxidative metabolism is by far the most efficient way of generating energy, Spiegelman said.

In the current study, the researchers produced mice with higher than normal levels of the transcriptional coactivator PGC-1â in their skeletal muscles. Transcriptional coactivators work with other cellular factors and machinery to control the activity of other genes. While earlier studies had found that the related coactivator PGC-1â plays a role in determining muscle type, the role of PGC-1â wasn't known.

"The muscle from the PGC-1â transgenic mice was strikingly redder in appearance than wild-type controls," indicative of their increased mitochondrial content, the researchers now report. Upon further examination, the researchers were surprised to find that the fibers showed a reduction in I, IIA, and IIB MHCs and as much as a 5-fold increase in IIX MHC.

Nearly 100% of muscle fibers in the transgenic animals contained abundant MHC IIX mRNA and protein, they found, as compared to only 15%–20% in normal animals. PGC-1â also changed the muscles' metabolic characteristics by driving the activity of genes that spark proliferation of mitochondria.

The PGC-1â animals with more IIX muscle fibers showed a greater capacity for aerobic exercise, they found. Transgenic mice were able to run, on average, for 32.5 min to exhaustion, compared to 26 min for their normal littermates, Spiegelman's group reported.

"These data have potential importance for the therapy of a number of muscular and neuromuscular diseases in humans," Spiegelman's group concluded.

"Many conditions accompanied by loss of physical mobility, including paraplegia, prolonged bed rest, and muscular dystrophies, involve a loss of oxidative fibers and their replacement with glycolytic fibers. This, in turn, results in a further loss of resistance to fatigue, exacerbating the patient's condition in a downward spiral. The identification of PGC-1â as a potential mediator of the development of oxidative type IIX fibers suggests new ways to modulate muscle fiber type in health and disease."

Erin Doonan | EurekAlert!
Further information:
http://www.cellmetabolism.org

Further reports about: Condition IIX MHC PGC-1â Spiegelman fiber skeletal muscle

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>