Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New details on how the immune system recognizes influenza

05.01.2007
Drawing upon a massive database established with funds from the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), scientists have completed the most comprehensive analysis to date of published influenza A virus epitopes--the critical sites on the virus that are recognized by the immune system. The findings, reported by researchers at the La Jolla Institute for Allergy and Immunology (LIAI), are being published online this week by the journal Proceedings of the National Academy of Sciences.

The study should help scientists who are designing new vaccines, diagnostics and immune-based therapies against seasonal and pandemic influenza because it reveals in molecular detail exactly where the immune system focuses on the viruses. Although the complete molecular structures of essentially all major strains of influenza viruses are known, immune responses concentrate on limited regions of certain parts of the virus, and these regions must be identified as immune epitopes by research studies.

The LIAI team found that while there were hundreds of shared epitopes among different virus strains, including the avian H5N1 virus, only one has been published that appears ideal for multi-strain vaccines. Information on shared protective epitopes is important for developing influenza vaccines that can provide broad protection against multiple strains of the virus.

"This study is interesting for what it shows we know and do not know," says NIAID Director Anthony S. Fauci, M.D. "It reveals many gaps in our knowledge of influenza viruses and indicates where we need to focus our attention."

The analysis drew upon a much larger effort called the Immune Epitope Database and Analysis Resources Program, which began in 2004 after NIAID awarded LIAI a $25 million contract to create a single repository of immune epitopes from critical disease-causing microbes, including agents that might be used in a bioterrorist attack. Influenza epitopes comprise only a portion of the extensive database, which has become the largest single collection of such information anywhere in the world. It includes data from thousands of separate articles published over several decades, providing extensive dossiers on dozens of pathogens.

"The purpose of the database is to provide a catalog of molecules and structures that scientists around the world can quickly access and use to understand the immune response to a variety of epitopes, or methodically predict responses to as-yet untested targets," says Alessandro Sette, Ph.D., who heads the Vaccine Discovery division at LIAI and is the lead investigator on the project.

For the current study, Dr. Sette and his colleagues examined 600 different epitopes from 58 different strains of influenza A virus. One of their main goals was to determine how conserved, or similar, epitopes are between different strains of bird and human influenza viruses. Knowing this is important because the virus rapidly mutates and can swap gene segments between strains, which could increase the ability of an avian virus to be transmissible to humans.

In addition, only a handful of the epitopes are known to be associated with protective immunity. Most of the influenza virus epitopes in the database are those recognized by a type of immune cell known as a T cell; far fewer are recognized by B cells, a type of white blood cell that produces infection-fighting antibodies. Antibodies induced by seasonal and pandemic flu viruses or vaccines are a major component of immunity that protects against these viruses.

Strains of influenza virus can vary enough in their neutralizing B cell epitopes that a vaccine against one strain may not protect against another strain. But if epitopes are conserved between virus strains, the immunity a person has developed towards one strain might provide at least some protection against the other strain.

Using a software tool they developed, the LIAI team found hundreds of conserved influenza virus epitopes in the database, including those between avian H5N1 and strains of human influenza viruses. But what is less clear from the analysis is how cross-reactive an immune response would be to most of these conserved epitopes. Further analyses may assist scientists in identifying vaccine targets that might offer broader protection and in predicting how effective a new vaccine will be.

Other analyses revealed major gaps in scientists' knowledge about influenza viruses. Of the 600 epitopes in the database, for instance, very few were from strains of H5N1 avian influenza. And even though the database contains epitopes from all the influenza virus' proteins, the vast majority of the data relates to just two influenza proteins, the hemagglutinin (HA) and nucleoprotein (NP).

Most of the influenza virus data comes from analyses of immune responses obtained with mice; some comes from rabbits, ferrets and monkeys, and very little comes from humans or birds. In fact, only one antibody epitope came from a human. The LIAI researchers say more studies should be focused on identifying human T and B cell epitopes from human and avian strains of influenza virus--especially those associated with protective immunity.

"The bottom line is that this study shows us where we need to go," says project director Stephen Wilson, Ph.D., chief technology officer at LIAI. "Hundreds of flu epitopes have already been published and are now in the database, but critical gaps become apparent when one looks for human antibody targets."

Plans for the future include adding data on epitopes that are involved in autoimmune diseases and epitopes that trigger allergic and asthmatic reactions. Dr. Sette and his colleagues have also built numerous tools for analyzing and visualizing the data and for predicting immunity against different pathogens--all of which is publicly accessible on their Web site (see http://immuneepitope.org).

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.nih.gov
http://immuneepitope.org
http://www.PandemicFlu.gov

Further reports about: Epitope Influenza LIAI avian immune immune response influenza viruses strain

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>