Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does a zebrafish grow a new tail?

27.12.2006
The answer may help treat human injuries

If a zebrafish loses a chunk of its tail fin, it'll grow back within a week. Like lizards, newts, and frogs, a zebrafish can replace surprisingly complex body parts. A tail fin, for example, has many different types of cells and is a very intricate structure. It is the fish version of an arm or leg.

The question of how cold-blooded animals re-grow missing tails and other appendages has fascinated veterinary and medical scientists. They also wonder if people, and other warm-blooded animals that evolved from these simpler creatures, might still have untapped regenerative powers hidden in their genes.

People are constantly renewing blood components, skeletal muscles and skin. We can regenerate liver tissue and repair minor injuries to bone, muscle, the tips of our toes and fingers, and the corneas of our eyes. Finding out more about the remarkable ability of amphibians and fish to re-grow complex parts might provide the information necessary to create treatments for people whose hearts, spinal cords, eyes or arms and legs have been badly hurt.

... more about:
»Regeneration »Signaling »Wnt5b »tail »zebrafish

Scientists have discovered some of the genes and cell-to-cell communication pathways that enable zebrafish to restore their tail fins.

"The ability to regenerate body parts such as those that are damaged by injury or disease," said Dr. Randall Moon, professor of pharmacology at the University of Washington (UW), an investigator of the Howard Hughes Medical Institute, and a researcher in the UW Institute for Stem Cell and Regenerative Medicine, "involves creating cells that can take any number of new roles. This can be done by re-programming cells that already have a given function or by activating resident stem cells."

Developmental biologists know that a particular kind of cell-to-cell communication, called Wnt/Beta-catenin signaling, regulates the fate of these as-yet undeveloped cells as an embryo forms. Through a cascade of signals, cells waiting for their calling learn which spot to take to help form the embryo, what kinds of cells to become there, and how many cells like themselves should be reproduced. These streams of signals also tell stem cells in adult organisms what functions to undertake. Once tissue formation starts, something has to tell it to stop before growth gets out of hand.

In the Dec. 21, 2006 online edition of the scientific journal Development, UW researchers report on laboratory evidence that suggests that Wnt/Beta signaling also promotes the regeneration of tail fins in zebrafish. Another, distinct signaling pathway activated by a different kind of Wnt protein called Wnt5b, turns down the genes that are turned on by Wnt/Beta-catenin, impairs cell proliferation, and inhibits fin regeneration. Fish that have a mutant Wnt5b protein regenerate missing tails very quickly. Too much of another related protein, Wnt8, also increases cell proliferation in the regenerating fin.

"We can actually increase the rate of regeneration by turning on these genes," Moon said.

The researchers also noted, "We show that Wnt/Beta-catenin signaling is activated in the regenerating zebrafish tail and is required for the formation and subsequent proliferation of the progenitor cells of the blastema." A blastema is a little nub of cells that directs regeneration, much like the conductor of an orchestra. By directing cell communication, these few cells grow into an organ or body part, in this case, a tail fin.

"It is most likely the inability of humans to form a blastema in the first place that renders us unable to re-grow arms and legs," said Cristi Stoick-Cooper, a graduate student in the multidisciplinary Neurobiology and Behavior program at the UW, who, with Gilbert Weidinger, now of the Technical University of Dresden (TUD), Germany, was first co-author of the study. The research was done in Moon's lab.

"Our study is the first to identify a gene (Wnt5b) that inhibits regeneration," said Weidinger, a former UW postdoctoral fellow who leads the Wnt Signaling in Development and Regeneration research group at the TUD's Biotechnology Center. "This is very exciting, because this gene might also inhibit regeneration in mammals and man. So, if we find ways of interfering with the function of Wnt5b, we might be able to promote regeneration."

Moon added that, because the same genes for turning on and turning off growth and development are found in humans, and drugs exist that can regulate this pathway, the findings are directly relevant to future testing of whether scientists can increase the capacity of humans to re-build damaged organs.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Regeneration Signaling Wnt5b tail zebrafish

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>