Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'on/off switch' controls immune defenses against viruses

27.12.2006
Much like flipping a light switch, the hepatitis C virus turns on human immune defenses upon entering the body but also turns off those defenses by manipulating interaction of key cellular proteins, UT Southwestern Medical Center researchers have found.

This same molecular "on/off switch" controls immunity against many viruses, highlighting a potential new target for novel therapeutics to fight viruses, the researchers report.

In a study available online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences, UT Southwestern scientists describe how the proteins RIG-I and LGP2 normally interact to turn on and off immune response to hepatitis C.

It's known that when a virus invades a cell, the RIG-I protein triggers the body to generate an immune response. Once the virus has been cleared out, the LGP2 protein turns off the RIG-I signals.

... more about:
»Hepatitis »LGP2 »RIG-I »controls »defenses

This interaction between RIG-I and LGP2 is vital for properly regulating immunity, but viruses such as hepatitis C can disrupt the normal process to shut down immune defenses early, the research team found.

"This knowledge will help us design drugs that mimic the viral effects on these proteins to either activate a host's immune response or shut it down," said Dr. Michael Gale, associate professor of microbiology and the study's senior author. "This holds great potential in developing new disease therapies, because the tactics employed by hepatitis C to trigger immune response are similar to those employed by other viruses such as West Nile, influenza and the common cold."

Dr. Gale's research centers on studying the mechanisms viruses use to evade immune defenses. Of particular interest is the hepatitis C virus, a blood-borne infection transmitted by intravenous drug use, blood transfusions and sexual contact. It affects 4 million U.S. residents and is the nation's leading cause of cirrhosis and liver cancer.

In 2005 Dr. Gale and his team completed several breakthrough studies on hepatitis C, discovering that the RIG-I protein binds to viral genetic material. Then, RIG-I changes its shape and sends signals to other proteins that spur production of interferon, a molecule that stops viral replication. The researchers also found that the virus launches a counterattack on RIG-I, producing a protein called a protease to disrupt the signaling process, preventing interferon production and allowing viral replication.

Just how RIG-I signaling is normally regulated, however, hadn't been known.

In the current study, UT Southwestern researchers found that RIG-I and LGP2 each contain a repressor domain, a sort of docking site that controls the actions of each protein. The domain is the key site that regulates the ability of RIG-I to bind to its signaling partners, including LGP2, acting as a switch for controlling immune response, Dr. Gale said.

"Hepatitis C and others viruses hijack this signaling pathway to stop immune defenses," he said.

His research team and others are working to design novel therapeutics and drugs that could mimic viral effects on RIG-I to spur antiviral response or, conversely, mimic viral effects on LGP2 to shut down RIG-I activity. RIG-I shutdown would be necessary in cases when the immune system's response to a virus is dangerously overactive, which happened in many flu cases during the 1918 pandemic.

"Fine-tuning immune response to infection is where antiviral or immune regulatory drugs are headed," said Dr. Gale.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Hepatitis LGP2 RIG-I controls defenses

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>