Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A simple feedback resistor switch keeps latent HIV from awakening

Upon entering a cell, a virus often becomes dormant, turning off its genes and laying low until awakened by som e trigger from its environment. When that trigger is pulled, the virus quickly ramps up production of proteins through built-in positive-feedback loops that turn up gene transcription.

(In positive feedback, production of something stimulates more production of that thing, resulting in exponential, or faster, growth.) If the viral environment were perfectly regulated and viral gene expression perfectly silenced during latency, this system would be foolproof. But this is almost never the case—there is always noise and always the potential for some low level of erroneous transcription. This poses a problem for the virus—how does it prevent stray transcription from erupting into full-blown activation?

Certain bacterial viruses manage this problem by encoding intricate repressor circuits that efficiently block transcription. But animal viruses, specifically HIV, appear to lack similar repressor circuits. In a new study, published online in the open access journal PLoS Biology, Leor Weinberger and Thomas Shenk propose that some animal viruses, including HIV, regulate their potential for positive feedback and maintain latency by successively modifying and dissipating, or introducing a resistor into, the main activator of transcription.

HIV’s transcriptional activator, the Tat gene, is encoded in the HIV genome. Once Tat is transcribed, it can rapidly increase transcription not only of itself, but also of other genes that ultimately lead to viral replication. Thus, the Tat protein acts like a molecular switch, making it a likely target for regulating latency. In some kinds of molecular switches, the conversion between on and off states is regulated by self-oligomerization, or binding to several other identical molecules. The shape changes induced by binding or unbinding drive the complex into two different stable conformations. But , the authors found no experimental evidence for oligomerization of Tat; instead, both on and off forms appear to be monomers.

Other studies have shown that Tat is activated by the addition of an acetyl group—a functional group that is frequently added to (acetylation) or removed from (deacetylation) proteins to modify their properties—and that deacetylation inactivates Tat. Based on the known kinetics of both acetylation and deacetylation, the authors postulated that a resistor might exist in the Tat circuit. A simple mathematical model showed that the interconversion of the two forms, coupled with the known rate of breakdown of Tat, was sufficient to encode a resistor that explained Tat circuit shutoff and possibly the stability of HIV’s latent state.

In the Tat resistor model, as in the cell, Tat deacetylation occurs at a much faster rate than acetylation. Deacetylated (inactive) Tat can take one of two paths—reconversion in to acetylated (active) Tat, or destruction of the protein by cellular machinery. When the appropriate conversion and destruction rates were fed into their model, activated Tat appeared briefly after a stray burst of transcription but quickly disappeared without breaking viral latency. This prediction of the model was then precisely replicated in cell culture experiments. An array of cell culture experiments perturbing the supposed Tat resistor was then performed. For example, inhibition of the deacetylating enzyme SirT1 induced Tat transcription activation in cells, further supporting the role of Tat acetylation in controlling viral dormancy. Finally, simulations under noisy conditions predicted that this simple resistor system was better able to resist environmental fluctuations than hypothetical oligomer-dependent switches, and cell-sorting experiments confirmed this prediction.

This simple switch, in which the deactivating reaction overpowers the activating rea ction under most circumstances, acts as a “feedback resistor,” and its general features, the authors suggest, are likely to be found in other systems that must rapidly alternate between two states while resisting noise in the environment. Their model may also provide an explanation for some puzzling observations about Tat and HIV. Tat contains at least two acetylation sites that must both be deacetylated to turn off transcription. The authors propose this requirement may avoid making the off state so easy to reach that the virus remains dormant all the time. This model also helps explain why some HIV patients experience short “blips” of viral activity, despite relatively low viral concentration. According to the authors, these pulses of viral activation may be due either to random increases of Tat activity or to environmental inhibitors of the SirT1 enzyme, such as dihydrocoumarin, a natural flavoring agent found in clover.

Citation: Weinbe rger LS, Shenk T (2007) An HIV feedback resistor: Auto-regulatory circuit deactivator and noise buffer. PLoS Biol 5(1): e9. doi:10.1371/journal.pbio.0050009.

Andrew Hyde | alfa
Further information:

Further reports about: HIV SOM acetylation deacetylation latency transcription

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>