Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT creates 3D scaffold for growing stem cells

Stem cells grew, multiplied and differentiated into brain cells on a new three-dimensional scaffold of tiny protein fragments designed to be more like a living body than any other cell culture system.

An MIT engineer and Italian colleagues will report the invention--which may one day replace the ubiquitous Petri dish for growing cells--in the Dec. 27 issue of the Public Library of Science (PLoS) ONE.

Shuguang Zhang, associate director of MIT's Center for Biomedical Engineering, is a pioneer in coaxing tiny fragments of amino acids called self-assembling peptides to organize themselves into useful structures. Working with visiting graduate student Fabrizio Gelain from Milan, Zhang created a designer scaffold from a network of protein nanofibers, each 5,000 times thinner than a human hair and containing pores up to 20,000 times smaller than the eye of a needle.

The researchers were able to grow a healthy colony of adult mouse stem cells on the three-dimensional scaffold without the drawbacks of two-dimensional systems.

... more about:
»Stem »Zhang »motif »scaffold

In addition to helping researchers get a more accurate picture of how cells grow and behave in the body, the new synthetic structure can provide a more conducive microenvironment for tissue cell cultures and tissues used in regenerative medicine, such as skin grafts or neurons to replace brain cells lost to injury or disease.

The scaffold itself can be transplanted directly into the body with no ill effects.

"The time has come to move on from two-dimensional dishes to culture systems that better represent the natural context of cells in tissues and organs," said Zhang, whose coauthors on the paper, in addition to Gelain, are from institutes and medical schools in Milan, Italy.

Life in two dimensions

Biomedical researchers have become increasingly aware of the limitations of growing living cells in coated, two-dimensional Petri dishes and glass slides.

In the body, cells are attached to and supported by the cells, other structures and proteins around them. A cell's normal environment is a complex network of tiny fibers, gaps and pores through which oxygen, hormones and nutrients are delivered and waste products filtered away. Cells move within their natural environments in response to chemical signals or other stimuli.

Researchers are aware that cells on flat surfaces have skewed metabolisms, gene expression and growing patterns. But the only choices have been glass labware and a product called Matrigel, a gelatinous protein mixture secreted by mouse tumor cells. While Matrigel does resemble a complex extracellular environment, it also contains growth factors and unknown proteins that limit its desirability for experiments requiring precise conditions.

"Synthetic biopolymer microfiber scaffolds have been studied for more than 30 years to mimic a living 3D microenvironment, but concerns exist about their degradation products and chemicals," the authors wrote in the paper.

Other synthetic polymer biomaterials are simply too big. Getting cells to grow on them is like forcing spiders to build webs on skyscraper girders. Zhang's nanofiber scaffold, around 1,000 times smaller than the existing systems, is much closer in size to the extracellular matrices that living cells manufacture themselves.

Adding motifs

With the addition of defined amino acid fragments called active motifs, the scaffold can be fashioned to coax stem cells to behave in certain desirable ways-such as differentiating into needed body tissues or migrating toward bone marrow and other natural destinations.

"What makes these designer scaffolds particularly interesting is that cells survive longer and differentiate better without additional soluble growth factors," Zhang said. "This suggests that extracellular microenvironments may play a more important role for cell survival and for carrying out cell functions than previously thought."

The active motif method could be readily adapted to studying cell-to-cell interaction, cell migrations, tumor and cancer cell interaction with normal cells, cell-based drug testing and other diverse applications.

"I believe that in the next 20 years all cell cultures will be in 3D with the designer scaffolds, and most textbooks about cell biology will have to be revised when people obtain results from 3D cell culture studies," Zhang said.

The researchers are now testing the designer scaffold with a variety of cells, including tooth, bone, heart, liver, cartilage, skin, pancreas, blood cells and artery-forming cells.

This work was supported by Olympus Corp. and the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:

Further reports about: Stem Zhang motif scaffold

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>