Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High doses of lithium-like drugs may impair neuronal function

22.12.2006
New laboratory research suggests that lithium and other drugs that inhibit a particular enzyme, GSK-3 beta, should be used with caution in treating Alzheimer's disease because too high a dose can impair, rather than enhance, neuronal function.

Lithium is currently in clinical trials for treating Alzheimer's. Pharmaceutical companies are interested in producing other GSK-3 beta inhibitors for the disease because these drugs are relatively easy to make and lithium has been shown to be safe in low doses in treating people with manic-depressive illness, said Dr. William D. Snider, professor of neurology, cell and molecular physiology at the University of North Carolina at Chapel Hill's School of Medicine.

"People might think that if you make the inhibitor stronger and stronger, that would be better. Our in-vitro experiments show that you will have to be careful with how you use GSK-3 beta inhibitors, because if you use too much, it will interfere with and possibly kill neurons," said Snider, who also is director of UNC's Neuroscience Center

The results, published online Thursday (Dec. 21) in the journal Neuron, were surprising because GSK-3 beta inhibitors have been shown at some doses to improve neuronal function. "It's known that when GSK-3 beta is inactivated that tends to allow the processes inside the cell it regulates to function normally," Snider said.

... more about:
»GSK-3 »Inhibitor »Neuronal »Snider

But when the researchers strongly inhibited GSK-3 beta in mouse neurons in cell culture, the growth of axons, which carry messages between nerve cells, was markedly reduced.

The researchers inhibited GSK-3 beta using RNA silencing. "RNA silencing allows you to specifically knock down the level of a particular protein inside the cell," Snider said.

In a second set of experiments, the researchers treated mouse neurons with a low dose and a high dose of a GSK-3 beta inhibitor similar to lithium. The high dose impaired neuronal function, while the low dose improved it.

Snider's group plans to further investigate the effect of inhibiting GSK-3 beta in a whole-mouse model. "We will take a conditional mutagenesis approach in mice to knock out the GSK-3 beta in the nervous system," Snider said. "We'll be able to find out if we get the same effect in the whole animal that we got using RNA silencing in the culture dish."

The researchers will also work to understand how GSK-3 operates in relation to a protein called Tau, which is implicated in Alzheimer's.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: GSK-3 Inhibitor Neuronal Snider

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>