Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dengue and other haemorrhagic fevers: towards a first potential treatment

22.12.2006
Globally, 60 to 100 million people are hit by Dengue, a viral disease transmitted by mosquitoes of the genus Aedes. The most severe form of this disease, which causes blood loss, can lead to a fatal shock-like state (Dengue Shock Syndrome) with or without associated haemorrhage, and is currently increasing in tropical countries.

The pathological mechanisms of Dengue are still unknown and it has not been possible to produce any treatment or vaccine. The only current prevention method is vector control.

This context brought IRD immunology and virology specialists and their research partners (1) to focus on these little-known biological mechanisms that are set into operation on infection by the virus, responsible for increasing the permeability of vascular wall endothelial cells and hence blood loss. The researchers found evidence of the role played by particular enzymes, metalloproteinases, in the occurrence of this leakage.

Low concentrations of these enzymes are present naturally in the organism, and they are involved in the reconfiguration of organ tissues during human embryonic development or tissue repair, but also in the development of certain cancers. They attack specifically the intercellular cement that binds the vascular walls. The research team demonstrated, in vitro, that Dengue-virus infection of certain targeted cells of the immune system (the dendritic cells) triggered an inflammatory reaction, stimulating these same target cells to overproduce metalloproteinases (gelatinolytic matrix metalloproteinases – MMP-9) and secrete them into the cellular supernatant (2). The quantity of enzyme produced therefore appears to be proportional to the concentration of viral particles present.

To verify that the metalloproteinases were the only agents responsible for the increased vascular permeability, the researchers performed tests on cell cultures of endothelial tissue, of the same type as that of the blood vessel walls. The supernatant of the infected cells, consequently containing the metalloproteinases, were brought into contact with this tissue. The vascular permeability, estimated by the quantity of supernatant passing through the endothelial tissue, appeared significantly higher. Conversely, the natural permeability of the tissue was restored when a specific inhibitor of these enzymes (SB-3CT) was added to the supernatant. Fluorescence microscope images of proteins of the intercellular cement, subjected to the action of the same supernatant, revealed that metalloproteinases act on the blood vessel walls like biological “scissors”: they destroy the protein bonds which maintain cell adhesion and hence keep them together. This action was, however, neutralized by specific metalloproteinase inhibitors.

A series of in vivo experiments following the same principle confirmed these hypotheses. A mouse model with blood circulatory system coloured blue was injected with supernatant containing these enzymes, on their own or in the presence of their inhibitor. This procedure not only reproduced the mechanisms of vascular rupture that originated blood leakage, but also – and more significantly – succeeded in neutralizing them.

This research sheds completely new light on Dengue’s pathological strategy. The results provide a way of explaining the major role played by direct action of metalloproteinases on blood-vessel walls. The overproduction of these enzymes, linked to the viral infection and the inflammatory reaction it triggers, does not however appear to be restricted to Dengue. The mechanism described here could provide a molecular basis for a new model of the action of other known haemorrhage-inducing viruses, such as Ebola, Marburg, or Hanta. New lines of therapeutic research against these pathologies, for which no treatment yet exists, can now be envisaged. Indeed, clinical trials on Dengue are currently in preparation.

Marie Guillaume-Signoret – IRD
Translation : Nicholas Flay
(1)These IRD investigations were conducted in partnership with research scientists from Mahidol University of Bangkok (Thailand), the company ImmunoClin Ltd (United Kingdom), research unit UMR 5535 CNRS/UM2 and unit 454 of INSERM (France).

(2)The cell supernatant corresponds to the culture medium of the infected cells.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2006/fas254.pdf

Further reports about: Dengue metalloproteinase permeability supernatant vascular

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>