Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single protein can determine severity of toxoplasma infections

21.12.2006
The unusual ability of the organism Toxoplasma to infect and reproduce inside almost all warm-blooded animals has led scientists to wonder about the tricks it uses so successfully to subvert the behavior of cells.

Now, a team of Stanford University School of Medicine researchers, led by John Boothroyd, PhD, has shown for the first time how Toxoplasma manages to be so effective: They documented how it injects a particular protein into the cell it infects and how that protein then travels to the cell's nucleus - where it blocks the cell's normal response to invasion.

Never before have researchers offered such insight into the way this type of parasite can hijack a host cell's genetic machinery for its own benefit. And the discovery has wide-ranging implications for a number of diseases caused by other parasites in this class, which reproduce only inside of cells, including the parasite that causes malaria.

The results will be published in the Dec. 20 edition of Nature. They come on the heels of another paper from Boothroyd's lab, published earlier in December in the journal Science, identifying two proteins that can determine how much damage the parasite Toxoplasma can inflict on an animal. Boothroyd is a professor of microbiology and immunology at the School of Medicine.

... more about:
»Boothroyd »Kinase »ROP16 »Toxoplasma »parasite

The latest findings reveal a new mechanism for how an intracellular pathogen can interact with its host, and they may help to explain important differences in how various Toxoplasma strains have evolved to exploit this interaction, said Susan Coller, PhD, one of the study's lead authors who was a postdoctoral scholar in Boothroyd's lab when the work was done.

What shocked the researchers was that a single protein was responsible for the dramatic differences between the strains; they had expected it to be much more complex.

"That it travels to the host cell nucleus is the cherry on the sundae," Coller said. "It's the heart of the cell, the ultimate prize. If you want to affect the cell in a dramatic way, go straight there."

The researchers found that Toxoplasma injects a protein called ROP16 into the host cell. ROP16 is a class of enzyme called a kinase, which is a mediator of cellular messages. Kinases are used by all cells to regulate a variety of key physiological processes, including responding to the presence of an invader. Injecting kinases is an extremely efficient way for a parasite to co-opt a host cell for its own purposes, Boothroyd said.

According to the study, different forms of the injected kinase have dramatically different effects on how a host cell responds to the invading parasite. Knowing what determines the extent of the immune response may allow for therapeutic manipulations, perhaps leading to physicians being able to tune down a response that's out of control in some cases of toxoplasmosis. Although Toxoplasma infections in humans are often asymptomatic, they can cause severe problems in isolated cases, particularly for individuals with compromised immune systems and for fetuses.

In North America and Europe, there are three main strains of Toxoplasma. Experiments have shown that the effects on mice infected with Toxoplasma are highly dependent on the type of strain. Recent results indicate that differences in infection might exist in humans too.

"When you look at the three different strains under the microscope, you can't distinguish them, yet they have such different properties," said the article's other lead author, Jeroen Saeij, PhD, a postdoctoral scholar in Boothroyd's laboratory. "Trying to find which parasite genes are responsible is like solving a puzzle."

The researchers sought to test the hypothesis that some of the strain-specific differences are a result of how the strains interact with the host cell. To do this, the researchers looked for large changes in the gene expression of the hosts - in this case, human cells - when they became infected.

The team used microarrays to examine the entire human genome's response to infection of cells with Toxoplasma. They pinpointed a number of genes involved in the immune response that were activated after being exposed to the parasite. Then, through a series of logical assumptions, they identified the Toxoplasma protein ROP16 as the culprit for causing the immunological changes in human cells. A key point is that it was responsible for the strain-specific differences in how the host cell responded to infection.

Each version of the ROP16 gene evolved to tweak the cells of a given host to varying degrees, Boothroyd said. "We hypothesize that, depending on which version of the ROP16 gene a given strain carries and which host is infected, it may carry out this task with greater or lesser efficiency," he said. "As a result, when a strain infects that host, the 'tweaking' is just right and the host is successfully infected with the minimum of damage."

Yet in a different host infected by that same strain, the activity of the ROP16 protein may be too strong, causing the parasite infection to rapidly overwhelm and kill the host. Alternatively, that version of ROP16 may not work in a given host at all, causing an excessive immune response in the host.

"Obviously the organism needs some powerful tools to manipulate the host's immune system to ensure its survival," said Saeij. "So it is very well possible that each time Toxo encountered new hosts, it expanded its arsenal of tools (duplicating or evolving existing kinases) to deal with the new challenges."

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Boothroyd Kinase ROP16 Toxoplasma parasite

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>