Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Batfish to the Rescue

21.12.2006
A masked marauder has emerged unexpectedly from the ocean to rescue a dying coral reef from destruction in the nick of time.

With the dramatic flair of comic-book superhero Batman, a batfish has saved a coral reef that was being choked to death by seaweed – although the fish was never previously known as a weed-eater.

Scientists at the ARC Centre of Excellence for Coral Reef Studies (CoECRS) who were studying how coral reefs are lost to weed were astonished when, after removing a cage from a particularly weedy bit of reef, the rare batfishes emerged out of the blue and cleaned up most of the weed.

“Worldwide, coral reefs are in decline,” says Professor Dave Bellwood of CoECRS and James Cook University. “Commonly this takes the form of the coral being smothered by weedy growth, a transition known as a phase-shift which is very hard, if not impossible, to reverse.”

... more about:
»Bellwood »CoECRS »coral reef »herbivore

“Research internationally has found that a major factor in this shift is the over-fishing of weed-eaters like parrot and surgeon fish – which normally keep the coral clean of weedy growth.”

Prof. Bellwood and colleagues Prof. Terry Hughes and Andrew Hoey were testing a weed-infested patch of coral near Orpheus Island on Australia’s Great Barrier Reef to see whether local herbivorous fish could restore it to a normal state.

The ensuing action was captured on underwater TV cameras. When the cage was removed from a particularly weedy patch, local herbivores pecked at it but made little impression on the dense growth of sargassum weed.

“Then these batfish showed up and got stuck into it. In five days they had halved the amount of weed. In eight weeks it was completely gone and the coral was free to grow unhindered,” Prof. Bellwood explains.

The turnaround was due mainly to one species of batfish, Platax pinnatus, which is comparatively rare on the GBR and was thought to feed only on invertebrates.

The event surprised the scientists in two ways, he says. First, it showed that the species one would normally expect to “mow the weeds” may make little impression on a heavily-overgrown reef, dashing researchers’ hopes that herbivores may be a way to restore heavily weed-infested reefs.

And second, it shows that in nature, help can come from a totally unexpected quarter – from a fish that itself may be at some risk.

“Batfish represent a ‘sleeping functional group’, meaning they are capable of performing a vital role in the life of the reef, but do so only under exceptional conditions,” Prof. Bellwood says.

“Platax are relatively rare on the Great Barrier Reef and currently have no specific legal protection. They are vulnerable because their large size makes them attractive to spear-fishers, while they depend as young fishes on coastal mangroves which are in decline in many areas.

“Indeed, the resilience of inshore GBR reefs may be closely tied to the fate of mangroves and their suitability for batfish recruitment.”

Batfishes may be one of the last intact herbivore populations capable of reversing serious weed overgrowth of inshore coral reefs, he adds. The reef has already all-but lost one major group of weed-mowers, the dugongs, while another – green turtles – is seriously endangered.

“If Platax is the last grazer of dense weedy stands on inshore coral reefs and it goes into decline, the capacity of these reefs to recover from phase-shifts could be lost.”

For scientists and reef managers, the batfish has thrown up a new challenge – how to identify other ‘sleeping functional groups’ that may prove lifesavers for the reef, but whose habits and abilities we as yet know nothing about.

Article
Bellwood,DR; Hughes, TP and Hoey, AS. “Sleeping Functional Group Drives Coral-Reef Recovery". published in Current Biology, Vol 16, 2434-2439, 19 December 2006. www.current-biology.com
More information:
Professor David Bellwood, Chief Investigator, CoECRS and James Cook University, 07 4781 4447; mob 0419422815 David.Bellwood@jcu.edu.au
Professor Terry Hughes, Director, CoECRS, 07 4781 4000
Jenny Lappin, CoECRS, 07 4781 4222
Jim O’Brien, James Cook University Media Office, 07 4781 4822

David Bellwood | EurekAlert!
Further information:
http://www.coralcoe.org.au

Further reports about: Bellwood CoECRS coral reef herbivore

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>