Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Researcher Discovers Target Site for Developing Mosquito Pesticides

21.12.2006
A Mayo Clinic researcher has discovered a target site within malaria-carrying mosquitoes that could be used to develop pesticides that are toxic to the Anopheles gambiae mosquito and other mosquito species. It would not affect humans and other mammals. If supported by further studies, the findings could offer a safer and more effective control of mosquito-borne diseases such as malaria.

Yuan-Ping Pang, Ph.D., a chemist and expert in computer-aided molecular design at Mayo Clinic, identified two unique amino acid residues called cysteine (286) and arginine (339). These exist in three mosquito species and the German cockroach.

Dr. Pang’s findings are significant because the residues could potentially be used as a target site for a pesticide that would incapacitate only insects that carry these residues, which do not exist in mammals. The findings appear in the current issue of PLoS ONE, a new, peer-reviewed, open-access journal published by the Public Library of Science.

“These findings suggest that new pesticides can be designed to target only the mosquito enzyme. Such pesticides could be used in small quantities to harm mosquitoes, but not mammals,” Dr. Pang says. “We’ve developed a blueprint for a pesticide that could i ncapacitate malaria-carrying mosquitoes. We are currently making a prototype of the new pesticide.”

Most pesticides today work by crippling the serine residue, which is another amino acid of the enzyme acetylcholinesterase and is located at the active site of the enzyme. This serine residue is present in both insects and mammals and therefore, any pesticide targeting this amino acid affects both insects and mammals.

Acetylcholinesterase is a vital enzyme to both insects and mammals. It breaks down the neurotransmitter acetylcholine, which is a primary neurotransmitter in the brain that is associated with memory and cognition.

Dr. Pang, director of Mayo Clinic’s Computer-Aided Molecular Design Laboratory, studied the genetic makeup of all known acetylcholinesterases in 73 species, including humans. He identified residues that only exist in the mosquito version of the acetylcholinesterase. To identify which of these residues is susc eptible to pesticides, he developed a three-dimensional model of mosquito acetylcholinesterase. With this three-dimensional model in hand, Dr. Pang learned how residues function in a way never before possible.

He found that the cysteine and arginine residues were located at the opening of the active site of the mosquito acetylcholinesterase. An active site is a pocket in an enzyme where a fast chemical reaction takes place to break down a molecule or build a new molecule.

Previous studies by Dr. Pang and researchers elsewhere found that the cysteine residue acts as a hook that could tether a small molecule in the active site of an enzyme and permanently damage the enzyme. This led Dr. Pang to believe the cysteine and arginine residues could be targeted by a pesticide that would not affect humans and other mammals.

“While a three-dimensional model of the mosquito enzyme acetylcholinesterase has been reported by other scientists, no mosqu ito-specific residue at the active site of acetylcholinesterase has been reported until now,” Dr. Pang says. “These findings suggest that a chemically stable molecule (to be used as a safer pesticide) could be made to react with the cysteine residue in the mosquito enzyme acetylcholinesterase and irreversibly inhibit the enzyme.”

The three-dimensional model Dr. Pang developed was created with a powerful computing system called a terascale system. He built the system with 590 personal computers. Terascale refers to computational power measured in the unit of teraflops, which is a processor capable of a speed of one trillion floating-point operations per second. A single teraflops computer is comparable to a computer that can search at least 50,000 Manhattan phonebooks in one second. Terascale systems are among the most powerful computers available today.

Dr. Pang published similar findings in October 2006 in which he described a potenti ally safer and more effective method for controlling crop-destroying aphids. The study was published in the journal Bioorganic & Medicinal Chemistry Letters.

Amy Reyes | alfa
Further information:
http://www.mayo.edu
http://dx.doi.org/10.1371/journal.pone.0000058

Further reports about: Acetylcholinesterase Pang cysteine pesticide residue three-dimensional

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>