Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Researcher Discovers Target Site for Developing Mosquito Pesticides

21.12.2006
A Mayo Clinic researcher has discovered a target site within malaria-carrying mosquitoes that could be used to develop pesticides that are toxic to the Anopheles gambiae mosquito and other mosquito species. It would not affect humans and other mammals. If supported by further studies, the findings could offer a safer and more effective control of mosquito-borne diseases such as malaria.

Yuan-Ping Pang, Ph.D., a chemist and expert in computer-aided molecular design at Mayo Clinic, identified two unique amino acid residues called cysteine (286) and arginine (339). These exist in three mosquito species and the German cockroach.

Dr. Pang’s findings are significant because the residues could potentially be used as a target site for a pesticide that would incapacitate only insects that carry these residues, which do not exist in mammals. The findings appear in the current issue of PLoS ONE, a new, peer-reviewed, open-access journal published by the Public Library of Science.

“These findings suggest that new pesticides can be designed to target only the mosquito enzyme. Such pesticides could be used in small quantities to harm mosquitoes, but not mammals,” Dr. Pang says. “We’ve developed a blueprint for a pesticide that could i ncapacitate malaria-carrying mosquitoes. We are currently making a prototype of the new pesticide.”

Most pesticides today work by crippling the serine residue, which is another amino acid of the enzyme acetylcholinesterase and is located at the active site of the enzyme. This serine residue is present in both insects and mammals and therefore, any pesticide targeting this amino acid affects both insects and mammals.

Acetylcholinesterase is a vital enzyme to both insects and mammals. It breaks down the neurotransmitter acetylcholine, which is a primary neurotransmitter in the brain that is associated with memory and cognition.

Dr. Pang, director of Mayo Clinic’s Computer-Aided Molecular Design Laboratory, studied the genetic makeup of all known acetylcholinesterases in 73 species, including humans. He identified residues that only exist in the mosquito version of the acetylcholinesterase. To identify which of these residues is susc eptible to pesticides, he developed a three-dimensional model of mosquito acetylcholinesterase. With this three-dimensional model in hand, Dr. Pang learned how residues function in a way never before possible.

He found that the cysteine and arginine residues were located at the opening of the active site of the mosquito acetylcholinesterase. An active site is a pocket in an enzyme where a fast chemical reaction takes place to break down a molecule or build a new molecule.

Previous studies by Dr. Pang and researchers elsewhere found that the cysteine residue acts as a hook that could tether a small molecule in the active site of an enzyme and permanently damage the enzyme. This led Dr. Pang to believe the cysteine and arginine residues could be targeted by a pesticide that would not affect humans and other mammals.

“While a three-dimensional model of the mosquito enzyme acetylcholinesterase has been reported by other scientists, no mosqu ito-specific residue at the active site of acetylcholinesterase has been reported until now,” Dr. Pang says. “These findings suggest that a chemically stable molecule (to be used as a safer pesticide) could be made to react with the cysteine residue in the mosquito enzyme acetylcholinesterase and irreversibly inhibit the enzyme.”

The three-dimensional model Dr. Pang developed was created with a powerful computing system called a terascale system. He built the system with 590 personal computers. Terascale refers to computational power measured in the unit of teraflops, which is a processor capable of a speed of one trillion floating-point operations per second. A single teraflops computer is comparable to a computer that can search at least 50,000 Manhattan phonebooks in one second. Terascale systems are among the most powerful computers available today.

Dr. Pang published similar findings in October 2006 in which he described a potenti ally safer and more effective method for controlling crop-destroying aphids. The study was published in the journal Bioorganic & Medicinal Chemistry Letters.

Amy Reyes | alfa
Further information:
http://www.mayo.edu
http://dx.doi.org/10.1371/journal.pone.0000058

Further reports about: Acetylcholinesterase Pang cysteine pesticide residue three-dimensional

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>