Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Researcher Discovers Target Site for Developing Mosquito Pesticides

A Mayo Clinic researcher has discovered a target site within malaria-carrying mosquitoes that could be used to develop pesticides that are toxic to the Anopheles gambiae mosquito and other mosquito species. It would not affect humans and other mammals. If supported by further studies, the findings could offer a safer and more effective control of mosquito-borne diseases such as malaria.

Yuan-Ping Pang, Ph.D., a chemist and expert in computer-aided molecular design at Mayo Clinic, identified two unique amino acid residues called cysteine (286) and arginine (339). These exist in three mosquito species and the German cockroach.

Dr. Pang’s findings are significant because the residues could potentially be used as a target site for a pesticide that would incapacitate only insects that carry these residues, which do not exist in mammals. The findings appear in the current issue of PLoS ONE, a new, peer-reviewed, open-access journal published by the Public Library of Science.

“These findings suggest that new pesticides can be designed to target only the mosquito enzyme. Such pesticides could be used in small quantities to harm mosquitoes, but not mammals,” Dr. Pang says. “We’ve developed a blueprint for a pesticide that could i ncapacitate malaria-carrying mosquitoes. We are currently making a prototype of the new pesticide.”

Most pesticides today work by crippling the serine residue, which is another amino acid of the enzyme acetylcholinesterase and is located at the active site of the enzyme. This serine residue is present in both insects and mammals and therefore, any pesticide targeting this amino acid affects both insects and mammals.

Acetylcholinesterase is a vital enzyme to both insects and mammals. It breaks down the neurotransmitter acetylcholine, which is a primary neurotransmitter in the brain that is associated with memory and cognition.

Dr. Pang, director of Mayo Clinic’s Computer-Aided Molecular Design Laboratory, studied the genetic makeup of all known acetylcholinesterases in 73 species, including humans. He identified residues that only exist in the mosquito version of the acetylcholinesterase. To identify which of these residues is susc eptible to pesticides, he developed a three-dimensional model of mosquito acetylcholinesterase. With this three-dimensional model in hand, Dr. Pang learned how residues function in a way never before possible.

He found that the cysteine and arginine residues were located at the opening of the active site of the mosquito acetylcholinesterase. An active site is a pocket in an enzyme where a fast chemical reaction takes place to break down a molecule or build a new molecule.

Previous studies by Dr. Pang and researchers elsewhere found that the cysteine residue acts as a hook that could tether a small molecule in the active site of an enzyme and permanently damage the enzyme. This led Dr. Pang to believe the cysteine and arginine residues could be targeted by a pesticide that would not affect humans and other mammals.

“While a three-dimensional model of the mosquito enzyme acetylcholinesterase has been reported by other scientists, no mosqu ito-specific residue at the active site of acetylcholinesterase has been reported until now,” Dr. Pang says. “These findings suggest that a chemically stable molecule (to be used as a safer pesticide) could be made to react with the cysteine residue in the mosquito enzyme acetylcholinesterase and irreversibly inhibit the enzyme.”

The three-dimensional model Dr. Pang developed was created with a powerful computing system called a terascale system. He built the system with 590 personal computers. Terascale refers to computational power measured in the unit of teraflops, which is a processor capable of a speed of one trillion floating-point operations per second. A single teraflops computer is comparable to a computer that can search at least 50,000 Manhattan phonebooks in one second. Terascale systems are among the most powerful computers available today.

Dr. Pang published similar findings in October 2006 in which he described a potenti ally safer and more effective method for controlling crop-destroying aphids. The study was published in the journal Bioorganic & Medicinal Chemistry Letters.

Amy Reyes | alfa
Further information:

Further reports about: Acetylcholinesterase Pang cysteine pesticide residue three-dimensional

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>