Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis: the bacillus takes refuge in adipose cells

21.12.2006
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. It has been contributed by the article authors and/or their institutions. The opinions expressed do not necessarily reflect the views of the staff or the editors of PLoS ONE.

A team from the Institut Pasteur has recently shown that the tuberculosis bacillus hides from the immune system in its host's fat cells. This formidable pathogen is protected against even the most powerful antibiotics in these cells, in which it may remain dormant for years. This discovery, published in PLoS ONE, sheds new light on possible strategies for fighting tuberculosis. Attempts to eradicate the bacillus entirely from infected individuals should take these newly identified reservoir cells into account.

Mycobacterium tuberculosis, the bacillus responsible for tuberculosis can hide, in a dormant state, in adipose cells throughout the body. The bacterium is protected in this cellular environment, to which the natural immune defences have little access, and is inaccessible to isoniazid, one of the main antibiotics used to treat tuberculosis worldwide. These results were obtained by Olivier Neyrolles* and his colleagues from the Mycobacterial Genetics Unit directed by Brigitte Gicquel at the Institut Pasteur, in collaboration with Paul Fornès, a pathologist from Hôpital Européen Georges Pompidou. They raise questions of considerable importance in the fight against tuberculosis.

Tuberculosis kills almost two million people worldwide every year and is considered by the World Health Organisation to represent a global health emergency. However, the bacillus is much more prevalent in the world’s population than the statistics would lead us to believe, because only 5 to 10% of those infected actually develop tuberculosis. The bacillus may be present in a significant proportion of the population, remaining in a "dormant" state in the body, sometimes for years, and may be "reactivated" at any time. The risk of rea ctivation is particularly high in immunocompromised individuals, such as those infected with AIDS: the HIV virus and the tuberculosis bacillus make a formidable team, with each infectious agent facilitating the progression of the other.

... more about:
»Adipose »BACILLUS »One »PLoS »Tuberculosis

Neyrolles' team first demonstrated, in cell and tissue cultures, that adipose cells served as a reservoir for Mycobacterium tuberculosis, and that this protected the bacillus against isoniazid. They then investigated whether the pathogen was present in adipose cells in humans. They did this by testing for traces of the genetic structure of the bacillus in samples from people considered not to be infected. Analyses were carried out on samples from deceased subjects from Mexico, where tuberculosis is endemic, and from Parisian districts reporting very few cases of tuberculosis.

The bacterium was detected in the adipose tissue of about a quarter of these people, all of whom were unaware they were infected, in both Mexico an d France. These results suggest that the bacillus responsible for tuberculosis can remain protected in the adipose tissue of the body in the absence of any sign of disease.

This work has important implications for the prevention of this disease. It helps to explain how, many years after first testing positive for tuberculosis, people with no trace of the microbe in the lungs may develop some form of tuberculosis attacking the lungs, bones or genitals. It also suggests that isoniazid treatment, prescribed to the close friends and family of patients as a preventative measure, may in some cases not provide sufficient protection against the disease. This is particularly important for immunocompromised patients and for people with AIDS, for whom a secondary infection with tuberculosis bacillus may have very serious consequences.

This work highlights the importance of the search for new targeted therapeutic weapons, such as new antibiotics, which must be able to reach the dormant bacillus that has been hiding in adipose cells without our knowing it.

* Olivier Neyrolles belongs to URA 2172, CNRS,

Citation: Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornès P, Tailleux L, et al. (2006) Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence? PLoS ONE 1(1): e43. doi:10.1371/journal.pone.0000043

Bruno Baron | alfa
Further information:
http://www.plos.org
http://dx.doi.org/10.1371/journal.pone.0000043

Further reports about: Adipose BACILLUS One PLoS Tuberculosis

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>