Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser uncovers the logic of the stomata function

21.12.2006
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. It has been contributed by the article authors and/or their institutions. The opinions expressed do not necessarily reflect the views of the staff or the editors of PLoS ONE.

What you do is sometimes determined by what your neighbours do. Scientists believe that this extends to stomatal behaviour. Stomata are pores placed at the plant surface that allow gas exchange with the atmosphere. When entire plants are exposed to light, all their stomata open widely to maximize the uptake of CO2 for photosynthesis. In contrast, in the dark all the stomata remain closed to prevent an excessive water loss. In the inaugural issue of PLoS ONE, the teams of both Laura Serna and Jorge Casal have published the secret messages underlying stomatal behaviour by illuminating, for first time, individual stomata of the flowering plant Arabidopsis thaliana, whereas their neighbours were maintained in the dark. That stomata open independently of the behaviour of those around them is only a part of the secret they have uncovered.

They also found that the stomatal autonomous opening depends on the releasing of a light receptor, named PHOTOTROPIN1, from the cell membrane to the interior cell. These researches unravelled that, in addition to this process, stomatal opening requires changes directly induced by light in the interior cell. The nature of such as changes is unknown, and it brings an exciting challenge for the future.

But, why do stomata act with independence of the behaviour of their neighbours? The teams of Jorge Casal and Laura Serna measured the incident irradiance in a leaf partially shaded by another. They found that the incident irradiance is below the saturation value of phototropin action in the shade region and above saturation in the lighted area. Interestingly, such a change occurs in micrometric distance smaller than the cell distance between stomata neighbours. The stomata autonomy confers an advantage on the plant, which opens the lighted stoma, while maintains the shaded neighbour closed. This behaviour optimises the balance between water loss and CO2 acquisition.

... more about:
»Casal »One »PLoS »Serna »stomata »stomatal

The study performed by the teams of Laura Serna and Jorge Casal not only provides convincing evidence on the logic of the autonomous stomatal behaviour, and on the cellular mechanism underlying such as process. It also provides the background to inspire readers outside their own immediate field to consider the cellular autonomy and cell signalling of many other light-induced processes.

Citation: Cañamero RC, Boccalandro H, Casal J, Serna L (2006) Use of Confocal Laser as Light Source Reveals Stomata-Autonomous Function. PLoS ONE 1(1): e36. doi:10.1371/journal.pone.0000036

Andrew Hyde | alfa
Further information:
http://www.plos.org
http://dx.doi.org/10.1371/journal.pone.0000036

Further reports about: Casal One PLoS Serna stomata stomatal

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>