Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser uncovers the logic of the stomata function

21.12.2006
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. It has been contributed by the article authors and/or their institutions. The opinions expressed do not necessarily reflect the views of the staff or the editors of PLoS ONE.

What you do is sometimes determined by what your neighbours do. Scientists believe that this extends to stomatal behaviour. Stomata are pores placed at the plant surface that allow gas exchange with the atmosphere. When entire plants are exposed to light, all their stomata open widely to maximize the uptake of CO2 for photosynthesis. In contrast, in the dark all the stomata remain closed to prevent an excessive water loss. In the inaugural issue of PLoS ONE, the teams of both Laura Serna and Jorge Casal have published the secret messages underlying stomatal behaviour by illuminating, for first time, individual stomata of the flowering plant Arabidopsis thaliana, whereas their neighbours were maintained in the dark. That stomata open independently of the behaviour of those around them is only a part of the secret they have uncovered.

They also found that the stomatal autonomous opening depends on the releasing of a light receptor, named PHOTOTROPIN1, from the cell membrane to the interior cell. These researches unravelled that, in addition to this process, stomatal opening requires changes directly induced by light in the interior cell. The nature of such as changes is unknown, and it brings an exciting challenge for the future.

But, why do stomata act with independence of the behaviour of their neighbours? The teams of Jorge Casal and Laura Serna measured the incident irradiance in a leaf partially shaded by another. They found that the incident irradiance is below the saturation value of phototropin action in the shade region and above saturation in the lighted area. Interestingly, such a change occurs in micrometric distance smaller than the cell distance between stomata neighbours. The stomata autonomy confers an advantage on the plant, which opens the lighted stoma, while maintains the shaded neighbour closed. This behaviour optimises the balance between water loss and CO2 acquisition.

... more about:
»Casal »One »PLoS »Serna »stomata »stomatal

The study performed by the teams of Laura Serna and Jorge Casal not only provides convincing evidence on the logic of the autonomous stomatal behaviour, and on the cellular mechanism underlying such as process. It also provides the background to inspire readers outside their own immediate field to consider the cellular autonomy and cell signalling of many other light-induced processes.

Citation: Cañamero RC, Boccalandro H, Casal J, Serna L (2006) Use of Confocal Laser as Light Source Reveals Stomata-Autonomous Function. PLoS ONE 1(1): e36. doi:10.1371/journal.pone.0000036

Andrew Hyde | alfa
Further information:
http://www.plos.org
http://dx.doi.org/10.1371/journal.pone.0000036

Further reports about: Casal One PLoS Serna stomata stomatal

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>