Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find S tem Cell Therapy Effective In Targeting Metastatic Cancer

21.12.2006
Preclinical findings show tumors are attacked, not normal tissue.

Patients with advanced cancer that has spread to many different sites often do not have many treatment options, since they would be unable to tolerate the doses of treatment they would need to kill the tumors.

Researchers at City of Hope and St. Jude Children’s Research Hospital may have found a way to treat cancers that have spread throughout the body more effectively. They used modified neural stem cells to activate and concentrate chemotherapeutic drugs predominately at tumor sites, so that normal tissue surrounding the tumor and throughout the body remain relatively unharmed.

“This approach could significantly improve future treatme nt options for patients with metastatic cancer,” said Karen Aboody, M.D., assistant professor of Hematology/Hematopoietic Cell Transplantation and Neurosciences at City of Hope. “It not only has the potential to destroy residual tumor cells, but it should also improve patients’ quality of life by minimizing toxic side effects such as nausea, diarrhea or bone marrow suppression.”

... more about:
»Cancer »Foundation »metastatic »neuroblastoma

Aboody is the lead investigator of the study done in collaboration with senior investigator Mary Danks, Ph.D., associate member of Molecular Pharmacology at St. Jude Children’s Research Hospital in Memphis, Tenn. The study will be published Dec. 20 in PLoS ONE. A second paper with extended results from the study has been accepted for publication in Cancer Research in January.

Most chemotherapy drugs affect both normal and cancerous tissue, which is why they also are toxic to naturally fast-growing cells in the body such as hair follicles and intestinal cells. Aboody and her colleagues have developed a two-part system to infiltrate metastatic tumor sites, and then activate a chemotherapeutic drug, thereby localizing the drug’s effects to the tumor cells.

The technique takes advantage of the tendency for invasive tumors to attract neural stem cells. The researchers injected modified neural stem/progenitor cells into immunosuppressed mice that had been given neuroblastoma cells, which then formed tumors. After waiting a few days to allow the stem cells to migrate to the tumors, researchers administered a precursor-drug. When it reached the stem cells, the drug interacted with an enzyme the stem cells expressed, and was converted into an active drug that kills surrounding tumor cells. The precursor-drugs were administered for two weeks, then after a two-week break, a second round of stem/progenitor cells and drugs were administered.

One hundred percent of the neuroblastoma mice appe ared healthy and tumor-free at six months. Without treatment, all the neuroblastoma mice died within two-and-a-half months.

The results hold promise for treating solid tumors that metastasize including neuroblastoma, which represents 6 percent to 10 percent of all childhood cancers worldwide, with higher proportions in children under 2 years of age.

“The results are especially important in the case of high-risk neuroblastoma, because treatment-resistant cancer returns in as many as 80 percent of children, and the majority die of their disease,” said co-principal investigator Danks.

Aboody and her colleagues had previously published the efficacy of this technique in primary and metastatic tumors in the brain. This is the first research to demonstrate that it is also effective in a metastatic cancer model, targeting multiple solid tumor sites spread throughout the body. They speculate that the technique could also be applie d to other malignant solid tumors, including colon, brain, prostate and breast cancer, and are planning future preclinical trials using those tumors as well.

The research was funded by grants from the National Cancer Institute, Stop Cancer Foundation, Phi Beta Psi Sorority, the Rosalinde and Arthur Gilbert Foundation, the Neidorf Family Foundation, the Marcus Foundation and ALSAC.

Kathleen O’Neil | alfa
Further information:
http://www.coh.org

Further reports about: Cancer Foundation metastatic neuroblastoma

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>