Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find S tem Cell Therapy Effective In Targeting Metastatic Cancer

21.12.2006
Preclinical findings show tumors are attacked, not normal tissue.

Patients with advanced cancer that has spread to many different sites often do not have many treatment options, since they would be unable to tolerate the doses of treatment they would need to kill the tumors.

Researchers at City of Hope and St. Jude Children’s Research Hospital may have found a way to treat cancers that have spread throughout the body more effectively. They used modified neural stem cells to activate and concentrate chemotherapeutic drugs predominately at tumor sites, so that normal tissue surrounding the tumor and throughout the body remain relatively unharmed.

“This approach could significantly improve future treatme nt options for patients with metastatic cancer,” said Karen Aboody, M.D., assistant professor of Hematology/Hematopoietic Cell Transplantation and Neurosciences at City of Hope. “It not only has the potential to destroy residual tumor cells, but it should also improve patients’ quality of life by minimizing toxic side effects such as nausea, diarrhea or bone marrow suppression.”

... more about:
»Cancer »Foundation »metastatic »neuroblastoma

Aboody is the lead investigator of the study done in collaboration with senior investigator Mary Danks, Ph.D., associate member of Molecular Pharmacology at St. Jude Children’s Research Hospital in Memphis, Tenn. The study will be published Dec. 20 in PLoS ONE. A second paper with extended results from the study has been accepted for publication in Cancer Research in January.

Most chemotherapy drugs affect both normal and cancerous tissue, which is why they also are toxic to naturally fast-growing cells in the body such as hair follicles and intestinal cells. Aboody and her colleagues have developed a two-part system to infiltrate metastatic tumor sites, and then activate a chemotherapeutic drug, thereby localizing the drug’s effects to the tumor cells.

The technique takes advantage of the tendency for invasive tumors to attract neural stem cells. The researchers injected modified neural stem/progenitor cells into immunosuppressed mice that had been given neuroblastoma cells, which then formed tumors. After waiting a few days to allow the stem cells to migrate to the tumors, researchers administered a precursor-drug. When it reached the stem cells, the drug interacted with an enzyme the stem cells expressed, and was converted into an active drug that kills surrounding tumor cells. The precursor-drugs were administered for two weeks, then after a two-week break, a second round of stem/progenitor cells and drugs were administered.

One hundred percent of the neuroblastoma mice appe ared healthy and tumor-free at six months. Without treatment, all the neuroblastoma mice died within two-and-a-half months.

The results hold promise for treating solid tumors that metastasize including neuroblastoma, which represents 6 percent to 10 percent of all childhood cancers worldwide, with higher proportions in children under 2 years of age.

“The results are especially important in the case of high-risk neuroblastoma, because treatment-resistant cancer returns in as many as 80 percent of children, and the majority die of their disease,” said co-principal investigator Danks.

Aboody and her colleagues had previously published the efficacy of this technique in primary and metastatic tumors in the brain. This is the first research to demonstrate that it is also effective in a metastatic cancer model, targeting multiple solid tumor sites spread throughout the body. They speculate that the technique could also be applie d to other malignant solid tumors, including colon, brain, prostate and breast cancer, and are planning future preclinical trials using those tumors as well.

The research was funded by grants from the National Cancer Institute, Stop Cancer Foundation, Phi Beta Psi Sorority, the Rosalinde and Arthur Gilbert Foundation, the Neidorf Family Foundation, the Marcus Foundation and ALSAC.

Kathleen O’Neil | alfa
Further information:
http://www.coh.org

Further reports about: Cancer Foundation metastatic neuroblastoma

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>