Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nerve cells in diseased brain

21.12.2006
Nerve cells generated from stem cells in an adult, diseased, and damaged brain function as normal nerve cells. This has been shown at Lund University in Sweden in a new study published in the prestigious journal Neuron. The new nerve cells also seem to have a positive function, namely, to counteract the disease in the brain.

Until the middle of the 1990s researchers believed that new nerve cells could not be generated in the adult brain. Then it was found to be possible, and that new nerve cells are formed not only in healthy brains but also in brains affected by disease and damage. Professor Olle Lindvall, Assistant Professor Zaal Kokaia, and their associates at Lund University were the first scientists to demonstrate that new nerve cells could be created from the stem cells of an adult brain following a stroke and then migrate to the damaged area.

However, it has been unclear just how these new nerve cells function. Do they behave normally, and are they beneficial or detrimental to a diseased brain? For the first time, Professor Olle Lindvall, Assistant Professor Merab Kokaia, doctoral candidate Katie Jakubs, and others have now managed to answer these questions on the basis of experiments on rats.

"Our study shows that nerve cells that are generated from stem cells in an adult epileptic brain develop into normal nerve cells. Interestingly, they also join up with other nerve cells in a way that indicates they are trying to counteract the diseased function," says Olle Lindvall.

... more about:
»Lindvall »Nerve »Olle »diseased

This work, carried out at the Section for Restorative Neurology and the Stem Cell Center at Lund University, is basic research, but it has potential clinical applications down the road. By learning more about how new nerve cells are formed and how they function, it may be possible in the future to help the brain heal itself after a disease or injury.

More information: Olle Lindvall, cell phone: +46 705-171466; e-mail: olle.lindvall@med.lu.se . The article is available at www.neuron.org.

Ingela Björck | idw
Further information:
http://www.vr.se
http://www.neuron.org/content/article/abstract?uid=PIIS0896627306008701&highlight=lindvall

Further reports about: Lindvall Nerve Olle diseased

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>