Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-chimp difference may be bigger

20.12.2006
Approximately 6 percent of human and chimp genes are unique to those species, report scientists from Indiana University Bloomington and three other institutions.

The new estimate, reported in the inaugural issue of Public Library of Science ONE (Dec. 2006), takes into account something other measures of genetic difference do not -- the genes that aren't there.

That isn't to say the commonly reported 1.5 percent nucleotide-by-nucleotide difference between humans and chimps is wrong, said IUB computational biologist Matthew Hahn, who led the research. IUB postdoctoral researcher Jeffery Demuth is the paper's lead author.

"Both estimates are correct in their own way," Hahn said. "It depends on what you're asking. There isn't a single, standard estimate of variation that incorporates all the ways humans, chimps and other animals can be genetically different from each other."

... more about:
»chimp »common »estimate

By studying "gene families" -- sets of genes in every organism's genome that are similar (or identical) because they share a common origin -- the scientists also provide new information about the evolution of humanness. After surveying gene families common to both humans and chimps, the researchers observed in the human genome a significant increase in the duplication of genes that influence brain functions.

"Our results support mounting evidence that the simple duplication and loss of genes has played a bigger role in our evolution than changes within single genes," Hahn said.

That finding complements reports by University of Colorado and University of Michigan researchers in the journals Science and PLoS Biology earlier this year, in which researchers showed that both gains and losses of individual genes have contributed to human divergence from chimpanzees and other primates.

Hahn and his research partners examined 110,000 genes in 9,990 gene families that are shared by humans, common chimpanzees (Pan troglodytes), mice, rats and dogs. The scientists found that 5,622, or 56 percent, of the gene families they studied from these five species have grown or shrunk in the number of genes per gene family, suggesting changes in gene number have been so common as to constitute an evolutionary "revolving door."

The researchers paid special attention to gene number changes between humans and chimps. Using a statistical method they devised, the scientists inferred humans have gained 689 genes (through the duplication of existing genes) and lost 86 genes since diverging from their most recent common ancestor with chimps. Including the 729 genes chimps appear to have lost since their divergence, the total gene differences between humans and chimps was estimated to be about 6 percent.

Hahn said any serious measure of genetic difference between humans and chimps must incorporate both variation at the nucleotide level among coding genes and large-scale differences in the structure of human and chimp genomes. The real question biologists will face is not which measure is correct but rather which sets of differences have been more important in human evolution.

"That's not for me to decide," he said.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: chimp common estimate

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>