Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists catch cold


Snow may chill us through one or more receptors

New skin receptor is the tip of the iceberg.

A snowball in the face or a chilly breeze around the ankles opens a molecular trap door in our skin’s nerve cells, two studies now show1,2. A third suggests that this, the first cold sensor to be identified, is just the tip of the iceberg3.

How sensory neurons detect a drop in temperature is very hard to study because it affects so many cell processes.

David Julius of the University of California, San Francisco, and his colleagues resorted to using menthol, which has the same effects on cold-sensitive nerves as a drop in temperature. "Technically it is much easier to use a chemical," says Julius.

Julius’s team took genes for a host of unknown receptors normally found on the surface of sensory nerve cells and inserted them into human kidney cells1. The confused kidney cells dutifully produced the receptors on their surface, which the team then exposed to menthol.

One receptor fitted the bill perfectly. It now has the catchy name cold- and menthol-sensitive receptor (CMR1); it is an ion channel. It opens in the presence of menthol, allowing potassium and calcium ions to flood into a nerve cell. Cooling has the same effect on it.

In a separate study, using different methods, Ardem Patapoutin at the Scripps research Institute in La Jolla, California identified another, possibly the same, cold receptor. While it’s too early to tell, Patapoutin says he’d "bet they’re the same".

A specific receptor for cold is a surprise, says Amy MacDermott a physiologist at Columbia University in New York. "It is totally unknown and extremely interesting," she says. Given the difficulties of studying the mechanisms of cold detection, Julius’s team "makes a very good case," she says.

Cold comfort

A single sensor doesn’t explain everything. Félix Viana, a physiologist at Miguel Herná¡ndez University in Alicante, Spain, and colleagues have found that cold-sensitive nerves have a unique number of the ordinary potassium ion channels that are common to all nerves. "This specialized blend of ion channels makes them sensitive to cooling," he says.

The Spanish group looked for a specific receptor but didn’t find one, says Viana. But "just because you don’t find something it doesn’t mean it’s not there," he admits.

The three studies present new and different explanations for how we detect cold. Physiologist Arthur Craig at Barrow Neurological Institute in Phoenix, Arizona, wonders whether a lone cold sensor would be diverse enough to explain the range of temperatures that our skin is sensitive to. Viana’s model accounts for this, he points out.

Like any well-engineered system, the body’s temperature-sensing network almost certainly has back-up mechanisms. Says Craig: "Biology is based on redundancy" - the teams are probably just working on different parts of the problem. "We can be sure that the biology is more complex than either study," he adds.


  1. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature advance online publication, (2002).
  2. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell advance online publication, (2002).
  3. Viana, F., de la Peña, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neuroscience advance online publication, (2002).

TOM CLARKE | © Nature News Service
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>