Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists catch cold

11.02.2002


Snow may chill us through one or more receptors
© SPL


New skin receptor is the tip of the iceberg.

A snowball in the face or a chilly breeze around the ankles opens a molecular trap door in our skin’s nerve cells, two studies now show1,2. A third suggests that this, the first cold sensor to be identified, is just the tip of the iceberg3.

How sensory neurons detect a drop in temperature is very hard to study because it affects so many cell processes.



David Julius of the University of California, San Francisco, and his colleagues resorted to using menthol, which has the same effects on cold-sensitive nerves as a drop in temperature. "Technically it is much easier to use a chemical," says Julius.

Julius’s team took genes for a host of unknown receptors normally found on the surface of sensory nerve cells and inserted them into human kidney cells1. The confused kidney cells dutifully produced the receptors on their surface, which the team then exposed to menthol.

One receptor fitted the bill perfectly. It now has the catchy name cold- and menthol-sensitive receptor (CMR1); it is an ion channel. It opens in the presence of menthol, allowing potassium and calcium ions to flood into a nerve cell. Cooling has the same effect on it.

In a separate study, using different methods, Ardem Patapoutin at the Scripps research Institute in La Jolla, California identified another, possibly the same, cold receptor. While it’s too early to tell, Patapoutin says he’d "bet they’re the same".

A specific receptor for cold is a surprise, says Amy MacDermott a physiologist at Columbia University in New York. "It is totally unknown and extremely interesting," she says. Given the difficulties of studying the mechanisms of cold detection, Julius’s team "makes a very good case," she says.

Cold comfort

A single sensor doesn’t explain everything. Félix Viana, a physiologist at Miguel Herná¡ndez University in Alicante, Spain, and colleagues have found that cold-sensitive nerves have a unique number of the ordinary potassium ion channels that are common to all nerves. "This specialized blend of ion channels makes them sensitive to cooling," he says.

The Spanish group looked for a specific receptor but didn’t find one, says Viana. But "just because you don’t find something it doesn’t mean it’s not there," he admits.

The three studies present new and different explanations for how we detect cold. Physiologist Arthur Craig at Barrow Neurological Institute in Phoenix, Arizona, wonders whether a lone cold sensor would be diverse enough to explain the range of temperatures that our skin is sensitive to. Viana’s model accounts for this, he points out.

Like any well-engineered system, the body’s temperature-sensing network almost certainly has back-up mechanisms. Says Craig: "Biology is based on redundancy" - the teams are probably just working on different parts of the problem. "We can be sure that the biology is more complex than either study," he adds.

References

  1. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature advance online publication, (2002).
  2. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell advance online publication, (2002).
  3. Viana, F., de la Peña, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neuroscience advance online publication, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-14.html

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>