Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists catch cold

11.02.2002


Snow may chill us through one or more receptors
© SPL


New skin receptor is the tip of the iceberg.

A snowball in the face or a chilly breeze around the ankles opens a molecular trap door in our skin’s nerve cells, two studies now show1,2. A third suggests that this, the first cold sensor to be identified, is just the tip of the iceberg3.

How sensory neurons detect a drop in temperature is very hard to study because it affects so many cell processes.



David Julius of the University of California, San Francisco, and his colleagues resorted to using menthol, which has the same effects on cold-sensitive nerves as a drop in temperature. "Technically it is much easier to use a chemical," says Julius.

Julius’s team took genes for a host of unknown receptors normally found on the surface of sensory nerve cells and inserted them into human kidney cells1. The confused kidney cells dutifully produced the receptors on their surface, which the team then exposed to menthol.

One receptor fitted the bill perfectly. It now has the catchy name cold- and menthol-sensitive receptor (CMR1); it is an ion channel. It opens in the presence of menthol, allowing potassium and calcium ions to flood into a nerve cell. Cooling has the same effect on it.

In a separate study, using different methods, Ardem Patapoutin at the Scripps research Institute in La Jolla, California identified another, possibly the same, cold receptor. While it’s too early to tell, Patapoutin says he’d "bet they’re the same".

A specific receptor for cold is a surprise, says Amy MacDermott a physiologist at Columbia University in New York. "It is totally unknown and extremely interesting," she says. Given the difficulties of studying the mechanisms of cold detection, Julius’s team "makes a very good case," she says.

Cold comfort

A single sensor doesn’t explain everything. Félix Viana, a physiologist at Miguel Herná¡ndez University in Alicante, Spain, and colleagues have found that cold-sensitive nerves have a unique number of the ordinary potassium ion channels that are common to all nerves. "This specialized blend of ion channels makes them sensitive to cooling," he says.

The Spanish group looked for a specific receptor but didn’t find one, says Viana. But "just because you don’t find something it doesn’t mean it’s not there," he admits.

The three studies present new and different explanations for how we detect cold. Physiologist Arthur Craig at Barrow Neurological Institute in Phoenix, Arizona, wonders whether a lone cold sensor would be diverse enough to explain the range of temperatures that our skin is sensitive to. Viana’s model accounts for this, he points out.

Like any well-engineered system, the body’s temperature-sensing network almost certainly has back-up mechanisms. Says Craig: "Biology is based on redundancy" - the teams are probably just working on different parts of the problem. "We can be sure that the biology is more complex than either study," he adds.

References

  1. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature advance online publication, (2002).
  2. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell advance online publication, (2002).
  3. Viana, F., de la Peña, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neuroscience advance online publication, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-14.html

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>