Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene 90 percent responsible for making common parasite dangerous

18.12.2006
More than a decade of searching for factors that make the common parasite Toxoplasma gondii dangerous to humans has pinned 90 percent of the blame on just one of the parasite's approximately 6,000 genes.

The finding, reported in this week's issue of Science by researchers at Washington University School of Medicine in St. Louis and elsewhere, should make it easier to identify the parasite's most virulent strains and treat them.

The results suggest that when a more harmful strain of T. gondii appears, approximately 90 percent of the time it will have a different form of the virulence gene than that found in the more benign strains of the parasite.

Infection with T. gondii, or toxoplasmosis, is perhaps most familiar to the general public from the widespread recommendation that pregnant women avoid changing cat litter. Cats are commonly infected with the parasite, as are some livestock and wildlife. T. gondii's most infamous relatives are the parasites that cause malaria.

... more about:
»ROP18 »gondii »immune system »parasite »serious »strain »virulence

Epidemiologists estimate that as many as one in every four humans is infected with T. gondii. Infections are typically asymptomatic, only causing serious disease in patients with weakened immune systems. In some rare cases, though, infection in patients with healthy immune systems leads to serious eye or central nervous system disease, or congenital defects or death in the fetuses of pregnant women. Historically, scientists have found strains of T. gondii difficult to tell apart, heightening the mystery of occasional serious infections in healthy people.

"Clinically it may be helpful to be able to test the form of the parasite causing the infection to determine if a case requires aggressive management and treatment or is unlikely to be a cause of serious disease," says senior author L. David Sibley, Ph.D. professor of molecular microbiology. "This finding will advance us toward that goal."

ROP18, the T. gondii virulence gene identified by researchers, makes a protein that belongs to a class of signaling factors known as kinases that are ubiquitous in human biology.

"Kinases are active in cancers and autoimmune disorders, so pharmaceutical companies already have libraries of inhibitors they've developed to block the activity of these proteins," Sibley says. "Some patients can't tolerate the antibiotics we currently use to treat T. gondii infection, so in future studies we will want to screen these inhibitor libraries to see if one can selectively block ROP18 and serve as a more effective treatment."

The Institute for Genomic Research, in collaboration with the Wellcome Trust Sanger Institute, completed sequencing of the T. gondii genome in 2004. Three separate postdoctoral fellows (the co-first authors of the paper) then used three different post-genomic techniques to search the genome for potential virulence factors.

"All the approaches we used eventually pointed emphatically to a single gene, ROP18," Sibley notes. "The readings were just off the scale."

A survey of isolates from T. gondii strains from around the world found ROP18 and its effects on virulence to be widespread.

"The protein made by the ROP18 gene has an interesting and predictable function," says Sibley. "The parasite uses it to get a host cell 'drunk,' secreting the protein into the host after infection."

Inside the host cell, ROP18 presumably disrupts some important signaling process, altering the intracellular environment in a way that favors the parasite's growth and reproduction. Sibley notes that ROP18's primary role in T. gondii virulence suggests that similar genes in malaria parasites may be worthy of further study.

Sibley and his colleagues are currently working to identify ROP18's targets in the host cell. They are also looking for other genes that act together with ROP18 to contribute to T. gondii virulence.

"In addition, we plan to use the same genomic approaches that identified ROP18 to seek genes in T. gondii that affect other important characteristics, such as latency and transmissibility," he says.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: ROP18 gondii immune system parasite serious strain virulence

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>