Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two central mysteries in genome inheritance solved at UCSD

18.12.2006
The dance of the chromosomes during cell division, first described in the late 1800s and familiar to all high-school students from movies shown in biology classes, has long fascinated biologists. However, the molecular nature of a key component of cell division, the "chromosome-spindle" connection, which is critical for the inheritance of genetic information as cells divide, has remained elusive.

Researchers at the University of California, San Diego (UCSD) School of Medicine and the Ludwig Institute for Cancer Research have identified a protein group that forms the chromosome-spindle connection involved in pulling apart the two replicas of the duplicated genome during cell division. They have also identified a separate protein complex that helps the cell discriminate between correct and incorrect spindle connections, and shuts down the pulling process when the connections are incorrect to ensure that each new cell has a complete set of chromosomes.

In a pair of papers in the journal Cell – one published in the December 1 issue; the second on December 15 – the scientists report these solutions to two long-standing mysteries about the mechanism of genome inheritance during cell division.

"These two discoveries open the door to further studies of the chromosome-spindle interface, studies that could result in improvement of chemotherapies for cancer," said Arshad Desai, Ph.D., assistant professor of Cellular and Molecular Medicine at UCSD and investigator with the Ludwig Institute, who is principle investigator of both studies.

Cell division is central to the development, maintenance and propagation of all living organisms. During every cell cycle, the genome – which carries the blueprint of life – must be duplicated and distributed. Errors in genome distribution result in genetic birth defects and contribute to the genesis of cancer.

Accurate distribution of the genome, which is split into chromosomes of varying number depending on the species, requires specialized protein polymers called microtubules.

"After the genome is replicated, microtubule polymers build a spindle-shaped structure whose two ends collect precisely half of the duplicated genome before the cell is pinched in the middle to form two cells," said Desai. Chromosomes connect to the spindle microtubule polymers during this time, and interfering with this connection – using drugs that bind to microtubule polymers – is a common chemotherapy strategy used to target and curtail rapidly dividing cancer cells. While scientists have known that breakdown of this connection could stop the proliferation of cancerous cells, they didn't know how the connection itself was established.

Using a biochemical approach, Desai and postdoctoral fellow Iain Cheeseman, Ph.D., have solved this mystery. In the December 1 paper, they identified a protein group that forms the chromosome-spindle connection and is present in even the simplest single-celled organisms, indicating that its role in genome distribution is ancient and widely conserved. Identification of this protein group provides scientists with new drug targets in cancer cells.

"Right now, drugs used in chemotherapy affect microtubules in all the body's cells, resulting in adverse side effects, like nerve pain and loss of sensation ," said Desai. "If we could specifically target dividing cells, we should improve on current chemotherapy to treat the cancer with fewer side effects."

The second paper from Desai's research group, to be published in the December 15 issue of Cell, identifies a different type of connection between chromosomes and microtubule polymers, which operates to discriminate between correct and incorrect chromosome-spindle attachments.

Each replicated chromosome is comprised of a pair of identical sister chromatids, generated by the copying of the parental DNA strand. These pairs are held together during the early stages of cell division. Once all chromosomes properly connect to the spindle, the pairs are separated and sisters are pulled towards opposite ends of the spindle.

"If both chromatids of a chromosome, by chance, connect to a single end of the football-shaped spindle, the resulting daughter cells will lack the correct complement of genomic information – a situation that is dangerous as it can promote cancerous transformation," said Desai.

Cells avoid such a fate by detecting errors in attachment to the spindle, breaking down these defective attachments and starting over. But until now, scientists did not understand how cells detected such an error.

Sharsti Sandall, a graduate student in the Biomedical Sciences Program at UCSD, identified a complex of two proteins that bridges chromosomes and spindle microtubules and is required to detect attachment errors. This complex controls activation of a protein kinase called Aurora.

"A major question becomes, how are bad attachments detected"" said Desai. "Our results suggest that the linkage between chromosomes and the spindle, which includes a protein kinase activator, acts a sensor for bad attachments and relays their presence into kinase activation."

A protein kinase transfers a phosphate group to target proteins in order to modify their properties. One of the targets of activated Aurora kinase is the protein group that makes the chromosome-spindle connection, identified by Cheeseman in the December 1 paper.

Aurora phosphorylation reduces the ability of this protein group to bind microtubule polymers. This explains how bad attachments are dissolved, prompting new tries until all chromosomes in the cell are properly connected. Desai's future goal is to discover precisely how the complex identified by Sandall activates Aurora kinase only near bad attachments.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Chromosome Desai Kinase Polymers UCSD chromosome-spindle inheritance microtubule

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>