Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could the ability to expel worms lead to a future asthma treatment?

18.12.2006
New understanding of immune system creates unexpected links in medicine

Based on experiments with worms similar to those that infest millions of children in the tropics, researchers see potential for a new way to treat asthma. Parasitic infections and asthma may cause the human immune system to react in some of the same ways, and may one day be cured by manipulating some of the same proteins, according to research published today in the journal Science.

To be effective, the immune system must "decide" which cells and chemicals need to be ramped up to best destroy the invader at hand, be it bacterium, virus or worm. In 1986, Tim Mosmann, Ph.D., now director of the David H. Smith Center for Vaccine Biology and Immunology at the University of Rochester Medical Center, led a team that first described a new concept for how the immune system might make such choices: the Th1/Th2 Model. A landmark in immunology, it was a major step toward unraveling the system’s complexities. Today’s study results show how the model continues to define new players in the immune system and to suggest new treatment approaches.

"The point of the study is that each new detail in our understanding of the immune system creates opportunities to make changes that counter disease," said Mosmann. "These results, while early, suggest that helping the body make more of a newly defined immune chemical may prevent roundworm infection, and that shutting it down may reduce lung damage in asthma."

Part of the immune system is adaptive, pumping out vast numbers of immune cells on the hope that one will be the right shape to link up with, and become activated by, any invader encountered. When one of those immune cells recognizes an invader, it expands into an army of clones specifically selected to attack that organism. One workhorse of the adaptive system is the helper T cell, a white blood cell that secretes protein messengers called cytokines to accelerate the immune response.

According to Mosmann’s model, T cells differentiate into two major sets of helper T cells, Type 1 (Th1) and Type 2 (Th2), each defined by the cytokines they produce. Each profile is more effective at attacking certain invaders, with Th1 responses, for example, better against bacteria that live inside cells. Th2 cytokines include interleukin-4 (IL-4), interleukin-5 (IL-5) and interleukin-13 (IL-13), all of which are useful in immune responses against worms. In a clue to the worm/asthma link, IL-4, IL-5 and IL-13 also trigger mechanisms that cause irreversible damage to the lungs of asthmatic patients.

Study Details

How the mouse immune system reacts to the worms is central to Mosmann’s research because mice and humans share the Th1/Th2 immune system divide, because mouse and human roundworm parasites are relatives, and because roundworm infection remains a major threat in the developing world. His basic research on T cell subsets was funded by the National Institute of Allergy and Infectious Diseases.

More than 15,000 species of parasitic roundworms infect everything from grapes to wasps to cattle. In humans, infection is usually caused by eating undercooked pork or wild game, or by poor hygiene, and brings repeated episodes of diarrhea, anemia and malnutrition. Stranded soldiers were once advised by field manuals to eat a cigarette or drink a tablespoon of kerosene to stun the worms, but modern antihelminthic drugs (e.g. Albendazole, Ivermectin, Thiabendazole) are effective and much safer. Drug treatments, however, do not reach many living in the worst conditions nor do they prevent patients from becoming re-infected. Mosmann’s work could conceivably lead to a vaccine that would confer permanent immunity to worm infection, but such research remains in the future.

Having been exposed to bacteria and parasites since early in evolution, tissues lining the gut and lungs of mice and humans have developed ways to prevent invaders from entering the body. Tissues lining the gut, for example, shed their outer cell layers when exposed to worms. Helper T cells release chemicals that cause gut cells to rapidly divide and reproduce (grow). As new cells are created, older, outer, infested layers die, fall off (shed) and are expelled from the body with solid waste.

Using molecular biology techniques, Mosmann’s team found that roundworm infection led Th2 helper T cells, more than other T cell types, to produce greater amounts of a growth factor, amphiregulin, which triggers cells to divide and grow. The current results define amphiregulin for the first time as an important new player in the immune system, in the Th2 immune profile and perhaps in the many disease processes touched by it.

In the current study, mice were infected with the nematode parasite, Trichuris muris, a relative of the worm that causes trichinosis in humans. After 14 days of infection, the study found increased expression of amphiregulin along with higher levels of Th2 cytokines IL-4 and IL-13.

Researchers confirmed the relevance of amphiregulin in immune responses to the parasites by comparing worm counts in normal mice against mice that had been genetically engineered not to produce amphiregulin. Similar numbers of worm larvae were detected after ten days in both groups, and all mice cleared the parasite by day 19. Worm clearance at day 14, however, was significantly delayed in amphiregulin-deficient mice, as was the shed rate in their gut cells.

More immediate than the potential for an anti-worm vaccine, authors said, is the study’s finding for the first time that amphiregulin is a product of Th2 cells, which are known to play key roles in asthma, the chronic disorder that blocks and damages air passages in the lungs of 20 million Americans.

Researchers believe airborne irritants cause Th2 cells to release interleukins, which in turn leads to the release of toxic granules that cause direct tissue damage in the lungs. As the lung tries to heal the damage, growth factors cause the airway walls to thicken, by as much as 300 percent in severe cases. Could amphiregulin be the growth factor that causes permanent thickening of asthmatic airways, restricting airflow more and more as time goes by"

Mosmann’s team has already begun experiments to determine if the production of amphiregulin by the Th2 response in mice also occurs in human helper T cells. After that, researchers are interested in comparing amphiregulin expression levels in the cells of healthy versus asthmatic lungs.

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: Asthma Mosmann’s T cells Th2 amphiregulin cytokines immune immune system parasite

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>