Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano design adjustment may help find, clear some water contaminants

18.12.2006
Toxins such as perchlorate and nitrates could be targeted

Experiments designed to test discrepancies in theoretical computational chemistry have turned up a barely two-angstrom difference that may lead to a new approach to locate and remove dangerous toxins such as perchlorate and nitrates from the environment.

The research targets toxic groundwater contaminants that contain negatively charged ions known as anions (a-NI-ens), which are historically difficult to remove. Perchlorate, a rocket fuel additive recently linked to thyroid deficiency in women, has contaminated more than 450 wells in California alone. Nitrate contamination, which results mainly from the use of nitrogen fertilizer, is a leading cause of shutdowns of wells and public water supplies in the United States.

"There is a need for improved materials that are effective at removing anions from the environment," said Darren W. Johnson, a University of Oregon chemist and co-principal investigator of a study appearing online Dec. 13 ahead of regular publication in the Journal of the American Chemical Society. "A current leading strategy is anion exchange, which uses a polymeric resin to exchange an anion for one that’s not a problem." (Two other currently used methods aimed at anions are biochemical denitrification and reverse osmosis.)

... more about:
»Design »Interaction »binding »nanometers »nitrate »occur

In the new study, led by UO doctoral student Orion B. Berryman, researchers focused on anion-pi interaction, in which a negatively charged species is attracted to a neutral electron-deficient aromatic ring, which could be incorporated into a specifically designed receptor.

Anion-pi interactions have been the focus of recent theoretical work, in which electronic structure calculations predicted that anion binding between halides and electron-deficient aromatic rings will occur over the center of a ring. However, the lab experiments on crystalline material found that the binding occurs as much as 2 angstroms, or 0.2 nanometers from the center.

"It's very important to consider these off-centered anion-interactions occurring through a charge-transfer interaction," Berryman said. "We looked at solid-state structures and the geometry of the interaction involved in a simple system. In these initial studies we noted significant color changes due to this off-center binding geometry found in the crystal structures."

Co-principal investigator Benjamin P. Hay, a chemist at the Pacific Northwest National Laboratory in Richland, Wash., where Berryman studied last fall as part of UO's National Science Foundation-funded internship program, said the study has important ramifications in anionophore design, crystal engineering and other aspects of supramolecular chemistry. In fact, he said, the findings indicate that prior designs may be flawed, incomplete or even misleading. "We discovered an unexpected bonding motif that involves the transfer of charge from the anion to the arene -- in other words, a covalent bonding motif," Hay said. "This is the first theoretical characterization of what we have termed an off-center, weak charge-transfer interaction."

Anions, of which notable examples include DNA, nitrate, pertechnetate, cyanide and chromate, play indispensable roles in biological and chemical processes, but they also can contribute significantly to environmental pollution that threatens aquatic life cycles and human health.

Johnson, in collaboration with UO chemist Michael M. Haley, now is seeking to design receptors that aim to the off-center location, with a goal of developing sensors for anion detection. Because Berryman's research produced sometimes intense color changes at binding sites, such an approach could lead to developing materials that sense the presence of these toxins and remediate them.

While 0.2 nanometers seems an insignificant distance, it could mean there's a 100 percent chance that binding cannot occur, Johnson said. "We're finding that from a design standpoint, that 0.2 nanometers is a big difference."

He noted that estimating or calculating the binding distances when optimizing a receptor for positively charged binding, or cation, such as the chelation of metals by EDTA (ethylenedinitrilotetraacetic acid), is done almost exactly --s (0.01 nanometers). EDTA is widely used in industrial cleaners, detergents and textile production.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: Design Interaction binding nanometers nitrate occur

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>