Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano design adjustment may help find, clear some water contaminants

18.12.2006
Toxins such as perchlorate and nitrates could be targeted

Experiments designed to test discrepancies in theoretical computational chemistry have turned up a barely two-angstrom difference that may lead to a new approach to locate and remove dangerous toxins such as perchlorate and nitrates from the environment.

The research targets toxic groundwater contaminants that contain negatively charged ions known as anions (a-NI-ens), which are historically difficult to remove. Perchlorate, a rocket fuel additive recently linked to thyroid deficiency in women, has contaminated more than 450 wells in California alone. Nitrate contamination, which results mainly from the use of nitrogen fertilizer, is a leading cause of shutdowns of wells and public water supplies in the United States.

"There is a need for improved materials that are effective at removing anions from the environment," said Darren W. Johnson, a University of Oregon chemist and co-principal investigator of a study appearing online Dec. 13 ahead of regular publication in the Journal of the American Chemical Society. "A current leading strategy is anion exchange, which uses a polymeric resin to exchange an anion for one that’s not a problem." (Two other currently used methods aimed at anions are biochemical denitrification and reverse osmosis.)

... more about:
»Design »Interaction »binding »nanometers »nitrate »occur

In the new study, led by UO doctoral student Orion B. Berryman, researchers focused on anion-pi interaction, in which a negatively charged species is attracted to a neutral electron-deficient aromatic ring, which could be incorporated into a specifically designed receptor.

Anion-pi interactions have been the focus of recent theoretical work, in which electronic structure calculations predicted that anion binding between halides and electron-deficient aromatic rings will occur over the center of a ring. However, the lab experiments on crystalline material found that the binding occurs as much as 2 angstroms, or 0.2 nanometers from the center.

"It's very important to consider these off-centered anion-interactions occurring through a charge-transfer interaction," Berryman said. "We looked at solid-state structures and the geometry of the interaction involved in a simple system. In these initial studies we noted significant color changes due to this off-center binding geometry found in the crystal structures."

Co-principal investigator Benjamin P. Hay, a chemist at the Pacific Northwest National Laboratory in Richland, Wash., where Berryman studied last fall as part of UO's National Science Foundation-funded internship program, said the study has important ramifications in anionophore design, crystal engineering and other aspects of supramolecular chemistry. In fact, he said, the findings indicate that prior designs may be flawed, incomplete or even misleading. "We discovered an unexpected bonding motif that involves the transfer of charge from the anion to the arene -- in other words, a covalent bonding motif," Hay said. "This is the first theoretical characterization of what we have termed an off-center, weak charge-transfer interaction."

Anions, of which notable examples include DNA, nitrate, pertechnetate, cyanide and chromate, play indispensable roles in biological and chemical processes, but they also can contribute significantly to environmental pollution that threatens aquatic life cycles and human health.

Johnson, in collaboration with UO chemist Michael M. Haley, now is seeking to design receptors that aim to the off-center location, with a goal of developing sensors for anion detection. Because Berryman's research produced sometimes intense color changes at binding sites, such an approach could lead to developing materials that sense the presence of these toxins and remediate them.

While 0.2 nanometers seems an insignificant distance, it could mean there's a 100 percent chance that binding cannot occur, Johnson said. "We're finding that from a design standpoint, that 0.2 nanometers is a big difference."

He noted that estimating or calculating the binding distances when optimizing a receptor for positively charged binding, or cation, such as the chelation of metals by EDTA (ethylenedinitrilotetraacetic acid), is done almost exactly --s (0.01 nanometers). EDTA is widely used in industrial cleaners, detergents and textile production.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: Design Interaction binding nanometers nitrate occur

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>