Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large genome protects from mutations

18.12.2006
The major part of human genome as well as that of the majority of animals and plants is made up of a noncoding DNA, that is the DNA that does not control any protein synthesis.

In the opinion of L.I. Patrushev and I.G. Minkevich, specialists of the M.M. Shemiakin and Yu.A. Ovchinnikov Institute of Bio-organic Chemistry and the G.K. Skriabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, one of previously unknown functions of noncoding sections lies in protection from mutations of the genes and regulatory areas of genome needed to the organism.

With various species, the size of genome differs by more than 200,000 times, the genome size does not correspond to biological complexity of the species. Gigantic genomes exceeding the human ones by 34 times, belong to the urodelous amphibian – olm (Proteus) and a South-American lungfish. The leading position among the plants is kept by representatives of the liliaceous (lilies, hyacinths, daffodils, etc.). There are relatively few “needed” genes in gigantic genomes, the major volume is occupied by a noncoding DNA. The total quantity of DNAs in a single set of chromosomes is customaty to designate by the Latin letter C, therefore discrepancy between the genome size and biological complexity of a living organism possessing it was called the C paradox. The reasons are still unknown why some species have an extremely large genome or the functions that perform successions of noncoding DNAs of higher organisms, although researchers are certainly making various assumptions. In opinion of the Russian biologists, noncoding sections create an additional level of protection from chemical mutagens for coding sections.

Under ordinary conditions, mutagens are not in deficiency. Numerous substances are being constantly formed in the organism’s cells, for example active forms of oxygen, derivatives of basic nitrogens or oestrogen metabolites, under the action of which hundreds of thousands of injuries originate and are simultaneously present in chromosomal DNA. If the system intended for the DNA repair does not work in proper time, mutations will occur. As it has tuned out, the organism utilizes one more level of protection for genome safety. In particular, the genome size increase can reduce frequency of injuries of genes needed to the organism.

... more about:
»DNA »Genome »Nucleus »mutagens »noncoding

The researchers have determined that the injury frequency depends on the size of genome: the larger the size it, the lower the frequency is. So, large genome serves protection from injuries. Coding successions also protect each other: if mutation has affected one section, it bypasses another one. However, in this case some other gene is injured. It is much more convenient if the protective function is performed by the sections not containing important information. Besides, the noncoding DNA protects genes by “its own body”. The DNA is put in order in the nucleus of a nonproliferating cell: closer to the nucleus periphery, i.e. in the area where the concentration of mutagens coming from the outside should be the highest, the noncoding DNA is more often situated, but the sections rich in genes are hidden in the center.

During the entire life cycle, the DNA situated in the nucleus of all air-breathing creatures, remains in the flow of mutagens. Some of them, having avoided all barriers set by the cells, burst through into the depth of nucleus and injure the DNA. If mutagens become too numerous, they, according to the authors of the hypothesis, may influence hypothetical molecular sensors, which in their turn mobilize retrotransposons – mobile successions of noncoding section of a genome. As a result, retrotransposons increase in number, and the genome size grows, establishing a correspondence with new needs of the species. If the concentration of mutagens inside the nucleus decreases, the size of a genome will also reduce – its redundant sections will undergo “circumcision”.

If the genome size becomes too big, then mutations would almost not happen and the species evolution practically ceases, its conservation takes place. It is not by accident that gigantic sizes of genomes are typical for “living fossils” – the most ancient animals that have survived to our time.

In the authors’ opinion, the hypothesis reveals a previously unknown protective function of a redundant DNA succession in the genome and explains the C-paradox in a new way. And if the hypothesis is experimentally confirmed, it will be possible to use it for the development of new approaches to genome protection from chemical mutagens, and for overcoming hereditary diseases.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: DNA Genome Nucleus mutagens noncoding

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>