Molecular Solomon’s Knot

It has been a beloved symbol for centuries, prized as an ornament found in engravings and embroidery, mosaics, and tattoos—and now as a molecule: Solomon’s knot, a motif consisting of two doubly intertwined rings.

A team of researchers from the University of California, Los Angeles (USA), and Nottingham Trent University (UK) have now used a self-organization process to get molecular building blocks to weave themselves into a Solomon-type knot.

“The secret of our success is the careful selection of metal ions and solvents,” revealed J. Fraser Stoddart in the journal Angewandte Chemie. “Although various molecular species compete with each other in solution, the Solomon’s knot wins out during the crystallization process simply because it crystallizes better.”

Systems consisting of individual molecular components that are not chemically bound to each other, but rather are tied together through purely mechanical means, are an enormous challenge for scientists. Stoddart, one of the pioneers in the area of supramolecular chemistry, has successfully produced a whole series of such structures. For example, he and his team have produced a system of molecules in the form of Borromean rings, whose name is derived from an Italian family that used such interlocked rings in their crest.

Stoddart’s Borromean rings are formed from an 18-component self-assembly process in which six organic pieces with two “teeth” and another six with three “teeth” grip six zinc ions, producing the mutually interlocked three ring system. Things get particularly interesting when zinc and copper ions are mixed in a 1:1 ratio: a 12-component self-assembly process ensues to interlock two rings twice over instead of three, resulting in the formation of a molecular Solomon knot, isolated upon crystallization. The four loops of the knot are stabilized by two copper and two zinc ions. In solution, there is initially an equilibrium between the different types of knots. During crystallization, the Solomon’s knot form is preferred over the Borromean rings.

“In the making of these exotic compounds, chemical bonds are being broken just as fast as they are being formed until the compound that feels the most comfortable emerges as the final product,” explains Stoddart.

Author: J. Fraser Stoddart, University of California, Los Angeles (USA), http://stoddart.chem.ucla.edu/

Title: A Molecular Solomon Link

Angewandte Chemie International Edition 2007, 46, No. 1, 218–222, doi: 10.1002/anie.200603521

Media Contact

Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors