Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yes, Virginia, some snowflakes can look the same!

15.12.2006
Snowflakes are one of the most recognizable and endearing symbols of winter.
Their intricate shapes have been the inspiration for Christmas ornaments, jewelry and U.S. postage stamps. They are the subject of song, school projects and even scientific investigation, including a possible impact on global warming.

Jon Nelson, a researcher with Ritsumeikan University in Japan, has studied snowflakes for 15 years, and has some interesting insights into their delicate structures.

Is it true that no two snowflakes are alike?

The old adage that ‘no two snowflakes are alike' may ring true for larger snowflakes, but it might not hold true for smaller, simpler crystals that fall before they've had a chance to fully develop. Regardless, snow crystals have tremendous diversity, partly due to their very high sensitivity to tiny temperature changes as they fall through the clouds.

... more about:
»Molecule »Water »snowflake

How do snowflakes form?

A snowflake starts as a dust grain floating in a cloud. Water vapor in the air sticks to the dust grain and the resulting droplet turns directly into ice. And that's where the science kicks in.

First, the tiny ice crystal becomes hexagonal (six-sided). This shape originates from the chemistry of the water molecule, which consists of two hydrogen atoms bonded to an oxygen atom. Because of the angle of the water molecule and its hydrogen-bonding, the water molecules in a snowflake chemically bond to each other to form the six-sided flake. The flake eventually sprouts six tiny branches. Each of these branches grows to form side branches in a direction and shape that are influenced by the clustering of water molecules on the ice crystal surfaces.

CLICK HERE TO VIEW ILLUSTRATION ABOUT HOW SNOWFLAKES ARE FORMED: http://acswebcontent.acs.org/journalist_resources/snowposter.pdf

Why are scientists interested in the study of snowflakes?

The study of snowflakes, which are really ice crystals, has recently become important due to the possible influences that these crystals have on global climate change. Researchers now believe that ice crystals play a crucial role in ozone depletion, possibly by acting as a catalyst to break down ozone. Ice crystals in the atmosphere also play a key role in building up electric charges in clouds and are therefore believed to influence the production of lightning, although the mechanism is unclear.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Molecule Water snowflake

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>