Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists discover early key to regeneration

15.12.2006
Science may be one step closer to understanding how a limb can be grown or a spinal cord can be repaired. Scientists at The Forsyth Institute have discovered that some cells have to die for regeneration to occur.

This research may provide insight into mechanisms necessary for therapeutic regeneration in humans, potentially addressing tissues that are lost, damaged or non- functional as a result of genetic syndromes, birth defects, cancer, degenerative diseases, accidents, aging and organ failure. Through studies of the frog (Xenopus) tadpole, the Forsyth team examined the cellular underpinnings of regeneration.

The Xenopus tadpole is an ideal model for studying regeneration because it is able to re-grow a fully functioning tail and all of its components, including muscle, vasculature, skin, and spinal cord. The Forsyth scientists studied the role that apoptosis, a process of programmed cell death in multi-cellular organisms, plays in regeneration. The research team, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology, found that apoptosis has a novel role in development and a critical role in regeneration. According to Dr. Levin, "Simply put, some cells have to die for regeneration to happen."

The findings will be published in the January 1, 2007 issue of Developmental Biology (v301i1). "We were surprised to see that some cells need to be removed for regeneration to proceed," said Ai-Sun Tseng, Ph.D. the paper's first author. "It is exciting to think that someday this process could be managed to allow medically therapeutic regeneration."

... more about:
»Regeneration »apoptosis

Summary of Study

In the context of efforts to understand biophysical controls of regenerative processes, The Forsyth Center for Regenerative and Developmental Biology investigated the dynamics of cell number control in the regenerating tail bud. Previous research in the field has shown that one mechanism by which cell number is controlled is by programmed cell death, which has been shown to be involved in sculpting of growing tissue in a number of developmental systems including heart, limb and craniofacial patterning. This study shows that despite the massive tissue proliferation required to build the tail, an early apoptotic event is required for regeneration. Normal regeneration of the tail includes a small focus of apoptotic cells; when apoptosis is inhibited during the first 24 hours, regeneration cannot proceed and the growth of nerve axons becomes abnormal. Later inhibition of apoptosis has no effect, suggesting that the programmed death of a specific cellular component is a very early step in the regeneration program. One possible model is that tissues normally contain a population of cells whose purpose is to prevent massive growth in the region surrounding them. Future work by the Levin group will identify the cells that must die, in order to try to understand the signals that cells utilize for growth control.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

Further reports about: Regeneration apoptosis

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>