Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists discover early key to regeneration

15.12.2006
Science may be one step closer to understanding how a limb can be grown or a spinal cord can be repaired. Scientists at The Forsyth Institute have discovered that some cells have to die for regeneration to occur.

This research may provide insight into mechanisms necessary for therapeutic regeneration in humans, potentially addressing tissues that are lost, damaged or non- functional as a result of genetic syndromes, birth defects, cancer, degenerative diseases, accidents, aging and organ failure. Through studies of the frog (Xenopus) tadpole, the Forsyth team examined the cellular underpinnings of regeneration.

The Xenopus tadpole is an ideal model for studying regeneration because it is able to re-grow a fully functioning tail and all of its components, including muscle, vasculature, skin, and spinal cord. The Forsyth scientists studied the role that apoptosis, a process of programmed cell death in multi-cellular organisms, plays in regeneration. The research team, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology, found that apoptosis has a novel role in development and a critical role in regeneration. According to Dr. Levin, "Simply put, some cells have to die for regeneration to happen."

The findings will be published in the January 1, 2007 issue of Developmental Biology (v301i1). "We were surprised to see that some cells need to be removed for regeneration to proceed," said Ai-Sun Tseng, Ph.D. the paper's first author. "It is exciting to think that someday this process could be managed to allow medically therapeutic regeneration."

... more about:
»Regeneration »apoptosis

Summary of Study

In the context of efforts to understand biophysical controls of regenerative processes, The Forsyth Center for Regenerative and Developmental Biology investigated the dynamics of cell number control in the regenerating tail bud. Previous research in the field has shown that one mechanism by which cell number is controlled is by programmed cell death, which has been shown to be involved in sculpting of growing tissue in a number of developmental systems including heart, limb and craniofacial patterning. This study shows that despite the massive tissue proliferation required to build the tail, an early apoptotic event is required for regeneration. Normal regeneration of the tail includes a small focus of apoptotic cells; when apoptosis is inhibited during the first 24 hours, regeneration cannot proceed and the growth of nerve axons becomes abnormal. Later inhibition of apoptosis has no effect, suggesting that the programmed death of a specific cellular component is a very early step in the regeneration program. One possible model is that tissues normally contain a population of cells whose purpose is to prevent massive growth in the region surrounding them. Future work by the Levin group will identify the cells that must die, in order to try to understand the signals that cells utilize for growth control.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

Further reports about: Regeneration apoptosis

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>