Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of carbon dioxide receptors in insects may help fight infectious disease

15.12.2006
Mosquitoes don’t mind morning breath. They use the carbon dioxide people exhale as a way to identify a potential food source. But when they bite, they can pass on a number of dangerous infectious diseases, such as malaria, yellow fever, and West Nile encephalitis.

Now, reporting in today’s advance online publication in Nature, Leslie Vosshall’s laboratory at Rockefeller University has identified the two molecular receptors in fruit flies that help these insects detect carbon dioxide. The findings could prove to be important against the fight against global infectious disease.

"Insects are especially sensitive to carbon dioxide, using it to track food sources and assess their surrounding environment," says Vosshall, Chemers Family Associate Professor and head of the Laboratory of Neurogenetics and Behavior at Rockefeller. "The neurons in insects that respond to carbon dioxide were already known, but the molecular mechanism by which these neurons sense this gas was a mystery."

One protein, called Gr21a, was previously known to be expressed in the carbon dioxide responsive neurons, which are in the antennae of the fruit fly. Since in the fly, chemosensory receptors usually work together as a pair of unrelated proteins, Walton Jones, a former biomedical fellow and first author of the paper, began by looking for other members of the gustatory receptor family, and found that the Gr63a protein was always co-expressed with Gr21a, both in the larva and in the adult fly.

... more about:
»Gr21a »Gr63a »Infectious »Neuron »carbon dioxide »receptor

"I went on to look at the malaria mosquito and found two homologues of the fly genes, GPRGR22 and GPRGR24. They are also co-expressed in the mosquito’s maxillary palp, the appendage mosquitoes use to sense carbon dioxide," says Jones.

Using genetic manipulation, Jones was able to show that both Gr21a and Gr63a are all that is needed for a fly neuron to sense carbon dioxide. He took neurons that did not normally respond to carbon dioxide and found that only if he expressed both Gr21a and Gr63a together, those neurons now became excited by the gas. He also showed that when Gr63a is mutated, the mutant flies no longer respond to the high levels of carbon dioxide that wild type flies avoid.

These molecules are the first membrane-associated proteins that have been shown to sense a gas. All previously described gas sensors have been cytoplasmic. "Though we don’t know what other proteins might be involved in the signaling pathway, the identification of the carbon dioxide receptor provides a potential target for the design of inhibitors that would act as an insect repellent, "says Vosshall. "These inhibitors would help fight global infectious disease by reducing the attraction of blood-feeding insects to humans."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Gr21a Gr63a Infectious Neuron carbon dioxide receptor

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>