Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of carbon dioxide receptors in insects may help fight infectious disease

15.12.2006
Mosquitoes don’t mind morning breath. They use the carbon dioxide people exhale as a way to identify a potential food source. But when they bite, they can pass on a number of dangerous infectious diseases, such as malaria, yellow fever, and West Nile encephalitis.

Now, reporting in today’s advance online publication in Nature, Leslie Vosshall’s laboratory at Rockefeller University has identified the two molecular receptors in fruit flies that help these insects detect carbon dioxide. The findings could prove to be important against the fight against global infectious disease.

"Insects are especially sensitive to carbon dioxide, using it to track food sources and assess their surrounding environment," says Vosshall, Chemers Family Associate Professor and head of the Laboratory of Neurogenetics and Behavior at Rockefeller. "The neurons in insects that respond to carbon dioxide were already known, but the molecular mechanism by which these neurons sense this gas was a mystery."

One protein, called Gr21a, was previously known to be expressed in the carbon dioxide responsive neurons, which are in the antennae of the fruit fly. Since in the fly, chemosensory receptors usually work together as a pair of unrelated proteins, Walton Jones, a former biomedical fellow and first author of the paper, began by looking for other members of the gustatory receptor family, and found that the Gr63a protein was always co-expressed with Gr21a, both in the larva and in the adult fly.

... more about:
»Gr21a »Gr63a »Infectious »Neuron »carbon dioxide »receptor

"I went on to look at the malaria mosquito and found two homologues of the fly genes, GPRGR22 and GPRGR24. They are also co-expressed in the mosquito’s maxillary palp, the appendage mosquitoes use to sense carbon dioxide," says Jones.

Using genetic manipulation, Jones was able to show that both Gr21a and Gr63a are all that is needed for a fly neuron to sense carbon dioxide. He took neurons that did not normally respond to carbon dioxide and found that only if he expressed both Gr21a and Gr63a together, those neurons now became excited by the gas. He also showed that when Gr63a is mutated, the mutant flies no longer respond to the high levels of carbon dioxide that wild type flies avoid.

These molecules are the first membrane-associated proteins that have been shown to sense a gas. All previously described gas sensors have been cytoplasmic. "Though we don’t know what other proteins might be involved in the signaling pathway, the identification of the carbon dioxide receptor provides a potential target for the design of inhibitors that would act as an insect repellent, "says Vosshall. "These inhibitors would help fight global infectious disease by reducing the attraction of blood-feeding insects to humans."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Gr21a Gr63a Infectious Neuron carbon dioxide receptor

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>