Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fisheye view of the deadliest breast cancer

14.12.2006
A transgenic xenografted minnow puts aggressive breast cancer under the glass. All breast cancers are not created equal.

Inflammatory breast cancer (IBC) is the deadliest form of the disease, with fewer than half of those diagnosed today having a five-year prognosis for survival. To find out what drives this most aggressive of human breast cancers, and to rapidly screen for drugs that might stop IBC, researchers at the University of California, San Diego (UCSD), have come up with an unlikely yet extremely promising ally: a transparent fish suitable for xenografts.

More properly, it’s a transgenic zebrafish, a tropical minnow native to streams around the Bay of Bengal and common to aquariums around the world, which was chemically treated to be immune suppressed. In recent years, the zebrafish has vaulted to the top as a laboratory model organism. The zebrafish is tough, easy to breed, and a vertebrate, just like us. Being immune suppressed, the transgenic fish allowed Konstantin Stoletov and colleagues at UCSD to insert a xenograft of human MDA breast cancer cells. Being transparent, the zebrafish’s tissues gave them a window on live human cancer cells in action.

The researchers were particularly interested in the small GTPase RhoC that is overexpressed in highly metastatic forms of breast cancer. Using various fluorescent tags, they labeled human MDA breast cancer cells in two ways to mark the parental MDA cells and to mark tumor cells that overexpress RhoC. They injected both tumor cell lines into the immune-suppressed fish and watched the cancer’s progress over several weeks. The tumor cells homed in on blood vessels, forming tumor-like aggregates and tapping into the fish’s circulatory system by inducing an angiogenic response.

... more about:
»MDA »breast cancer »cancer cells »tumor cells

A separate fluorescent labeling allowed the researchers to simultaneously monitor the parental MDA cancer cells and the RhoC-overexpressing tumor cells in the context of the fish vasculature using high-resolution, multicolor confocal microscopy. While the parental MDA cells formed tightly packed aggregates, RhoC-overexpressing cells scattered within the fish tissue. RhoC overexpression also increased tumor cell membrane dynamics leading to continuous shedding of small cellular fragments.

The transparent fish also let the researchers make high-resolution 3D images of two potential anticancer compounds at work: a vascular endothelial growth factor (VEGF) receptor inhibitor called SU5416, and a protein kinase inhibitor called PP1. Analysis of compound and mock-treated animals revealed that SU5416 leads to shrinkage of tumor cells and tumor-induced vasculature, while PP1 mainly affects tumor cell survival.

In all, the researchers were delighted with their breast cancer model’s ability to work as a real-time study window into IBC tumor behavior and as a rapid screening system for anticancer drugs. In the race against aggressive breast cancers, Stoletov and colleagues see their xenografted, genetically engineered zebrafish as a potential front runner.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: MDA breast cancer cancer cells tumor cells

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>