Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fisheye view of the deadliest breast cancer

14.12.2006
A transgenic xenografted minnow puts aggressive breast cancer under the glass. All breast cancers are not created equal.

Inflammatory breast cancer (IBC) is the deadliest form of the disease, with fewer than half of those diagnosed today having a five-year prognosis for survival. To find out what drives this most aggressive of human breast cancers, and to rapidly screen for drugs that might stop IBC, researchers at the University of California, San Diego (UCSD), have come up with an unlikely yet extremely promising ally: a transparent fish suitable for xenografts.

More properly, it’s a transgenic zebrafish, a tropical minnow native to streams around the Bay of Bengal and common to aquariums around the world, which was chemically treated to be immune suppressed. In recent years, the zebrafish has vaulted to the top as a laboratory model organism. The zebrafish is tough, easy to breed, and a vertebrate, just like us. Being immune suppressed, the transgenic fish allowed Konstantin Stoletov and colleagues at UCSD to insert a xenograft of human MDA breast cancer cells. Being transparent, the zebrafish’s tissues gave them a window on live human cancer cells in action.

The researchers were particularly interested in the small GTPase RhoC that is overexpressed in highly metastatic forms of breast cancer. Using various fluorescent tags, they labeled human MDA breast cancer cells in two ways to mark the parental MDA cells and to mark tumor cells that overexpress RhoC. They injected both tumor cell lines into the immune-suppressed fish and watched the cancer’s progress over several weeks. The tumor cells homed in on blood vessels, forming tumor-like aggregates and tapping into the fish’s circulatory system by inducing an angiogenic response.

... more about:
»MDA »breast cancer »cancer cells »tumor cells

A separate fluorescent labeling allowed the researchers to simultaneously monitor the parental MDA cancer cells and the RhoC-overexpressing tumor cells in the context of the fish vasculature using high-resolution, multicolor confocal microscopy. While the parental MDA cells formed tightly packed aggregates, RhoC-overexpressing cells scattered within the fish tissue. RhoC overexpression also increased tumor cell membrane dynamics leading to continuous shedding of small cellular fragments.

The transparent fish also let the researchers make high-resolution 3D images of two potential anticancer compounds at work: a vascular endothelial growth factor (VEGF) receptor inhibitor called SU5416, and a protein kinase inhibitor called PP1. Analysis of compound and mock-treated animals revealed that SU5416 leads to shrinkage of tumor cells and tumor-induced vasculature, while PP1 mainly affects tumor cell survival.

In all, the researchers were delighted with their breast cancer model’s ability to work as a real-time study window into IBC tumor behavior and as a rapid screening system for anticancer drugs. In the race against aggressive breast cancers, Stoletov and colleagues see their xenografted, genetically engineered zebrafish as a potential front runner.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: MDA breast cancer cancer cells tumor cells

More articles from Life Sciences:

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>