Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fisheye view of the deadliest breast cancer

14.12.2006
A transgenic xenografted minnow puts aggressive breast cancer under the glass. All breast cancers are not created equal.

Inflammatory breast cancer (IBC) is the deadliest form of the disease, with fewer than half of those diagnosed today having a five-year prognosis for survival. To find out what drives this most aggressive of human breast cancers, and to rapidly screen for drugs that might stop IBC, researchers at the University of California, San Diego (UCSD), have come up with an unlikely yet extremely promising ally: a transparent fish suitable for xenografts.

More properly, it’s a transgenic zebrafish, a tropical minnow native to streams around the Bay of Bengal and common to aquariums around the world, which was chemically treated to be immune suppressed. In recent years, the zebrafish has vaulted to the top as a laboratory model organism. The zebrafish is tough, easy to breed, and a vertebrate, just like us. Being immune suppressed, the transgenic fish allowed Konstantin Stoletov and colleagues at UCSD to insert a xenograft of human MDA breast cancer cells. Being transparent, the zebrafish’s tissues gave them a window on live human cancer cells in action.

The researchers were particularly interested in the small GTPase RhoC that is overexpressed in highly metastatic forms of breast cancer. Using various fluorescent tags, they labeled human MDA breast cancer cells in two ways to mark the parental MDA cells and to mark tumor cells that overexpress RhoC. They injected both tumor cell lines into the immune-suppressed fish and watched the cancer’s progress over several weeks. The tumor cells homed in on blood vessels, forming tumor-like aggregates and tapping into the fish’s circulatory system by inducing an angiogenic response.

... more about:
»MDA »breast cancer »cancer cells »tumor cells

A separate fluorescent labeling allowed the researchers to simultaneously monitor the parental MDA cancer cells and the RhoC-overexpressing tumor cells in the context of the fish vasculature using high-resolution, multicolor confocal microscopy. While the parental MDA cells formed tightly packed aggregates, RhoC-overexpressing cells scattered within the fish tissue. RhoC overexpression also increased tumor cell membrane dynamics leading to continuous shedding of small cellular fragments.

The transparent fish also let the researchers make high-resolution 3D images of two potential anticancer compounds at work: a vascular endothelial growth factor (VEGF) receptor inhibitor called SU5416, and a protein kinase inhibitor called PP1. Analysis of compound and mock-treated animals revealed that SU5416 leads to shrinkage of tumor cells and tumor-induced vasculature, while PP1 mainly affects tumor cell survival.

In all, the researchers were delighted with their breast cancer model’s ability to work as a real-time study window into IBC tumor behavior and as a rapid screening system for anticancer drugs. In the race against aggressive breast cancers, Stoletov and colleagues see their xenografted, genetically engineered zebrafish as a potential front runner.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: MDA breast cancer cancer cells tumor cells

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>