Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vascular progenitor cells used to treat diabetes ulcers

14.12.2006
EVGN scientists identified blood vessels cells that succeed in repairing ulcers caused by diabetes mellitus.

Every 30 minutes a diabetic patient loses the use of his bottom limb due to the ulceration of tissues that degenerates into a necrosis, which is a typical side effect of this disease. For this reason, finding a proper treatment able to arrest this complication is among the priorities of the scientists who study this pathology.

Paolo Madeddu, scientist of the European Vascular Genomics Network (EVGN, www.evgn.org) from the University of Bristol, in a collaborative effort with colleagues from the Istituto Besta in Milano and EVGN scientists from INSERM U441 in Bordeaux, devised an experimental model based on the administration of Vascular Progenitor Cells (VPC). In the laboratory settings the model proved to be effective on ischemic diabetic ulcers.

The research was presented today, December 13th 2006, at the Annual EVGN Conference which is taking place in Toulouse (Dec. 11-14). As they are still preliminary data, the applications of these results to man are still far in the future. However, these extremely encouraging results prompted the scientist to start a whole set of new experiments aimed at the characterization of the compounds secreted by the VPCs, which are responsible for the healing properties on diabetic ulcers.

... more about:
»EVGN »Madeddu »VPC »ulcers »vascular cells

Diabetes is a social disease that affects several million people worldwide. The ischemic ulcers it causes are lesions that damage the deepest layers of tissues, markedly reducing muscles and bones functions. Quite often, they generate infections that aggravate the conditions of already compromised patients. It’s been a few years since scientists developed an interest in the therapeutic potential of stem cells for the treatment of diabetic ulcers. In this study, however, Paolo Madeddu and colleagues used so-called Vascular Progenitor Cells. “These cells have not been fully characterized yet” explained the EVGN scientist “but we know that they display a considerable regenerative potential in the vascular environment. Besides, they are able to counteract the cellular suicide, or apoptosis”.

A major objective of the study was the creation of a diabetic model that allowed the scientists to test the regenerative capacities of VPCs. “We employed a murine model that can develop ulcers similar to those observed in humans” Madeddu said. “Then we administered a specific subpopulation of VPCs and, a week after the treatment, we checked what was the overall effect on the ulcers. We observed that the treated lesions had become thinner and smaller compared to the untreated ones, and that they were surrounded by a number of newborn capillaries, indicating that a regeneration process was ongoing”.

A further confirmation that the treatment was efficacious came from another observation: scientists noticed that VPCs stimulated cellular proliferation and inhibited cellular apoptosis, a defensive mechanism which is active also in necrotic tissues that the organism resorts to when it is unable to heal damages. Effective as well was the “conditioned medium”, that is the medium where cells were cultured, after its administration on the lesions. “The medium – underlined Madeddu – contains one or more unidentified factors that stimulate endothelial cell proliferation. Its identification will be critical for the future of this research. These and other future results could set the ground for a targeted therapy, based on the administration of progenitor cells, or in alternative, on the administration of the therapeutic compounds that they secrete.

The European Vascular Genomics Network (EVGN) is the first Network of Excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: EVGN Madeddu VPC ulcers vascular cells

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>