Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vascular progenitor cells used to treat diabetes ulcers

14.12.2006
EVGN scientists identified blood vessels cells that succeed in repairing ulcers caused by diabetes mellitus.

Every 30 minutes a diabetic patient loses the use of his bottom limb due to the ulceration of tissues that degenerates into a necrosis, which is a typical side effect of this disease. For this reason, finding a proper treatment able to arrest this complication is among the priorities of the scientists who study this pathology.

Paolo Madeddu, scientist of the European Vascular Genomics Network (EVGN, www.evgn.org) from the University of Bristol, in a collaborative effort with colleagues from the Istituto Besta in Milano and EVGN scientists from INSERM U441 in Bordeaux, devised an experimental model based on the administration of Vascular Progenitor Cells (VPC). In the laboratory settings the model proved to be effective on ischemic diabetic ulcers.

The research was presented today, December 13th 2006, at the Annual EVGN Conference which is taking place in Toulouse (Dec. 11-14). As they are still preliminary data, the applications of these results to man are still far in the future. However, these extremely encouraging results prompted the scientist to start a whole set of new experiments aimed at the characterization of the compounds secreted by the VPCs, which are responsible for the healing properties on diabetic ulcers.

... more about:
»EVGN »Madeddu »VPC »ulcers »vascular cells

Diabetes is a social disease that affects several million people worldwide. The ischemic ulcers it causes are lesions that damage the deepest layers of tissues, markedly reducing muscles and bones functions. Quite often, they generate infections that aggravate the conditions of already compromised patients. It’s been a few years since scientists developed an interest in the therapeutic potential of stem cells for the treatment of diabetic ulcers. In this study, however, Paolo Madeddu and colleagues used so-called Vascular Progenitor Cells. “These cells have not been fully characterized yet” explained the EVGN scientist “but we know that they display a considerable regenerative potential in the vascular environment. Besides, they are able to counteract the cellular suicide, or apoptosis”.

A major objective of the study was the creation of a diabetic model that allowed the scientists to test the regenerative capacities of VPCs. “We employed a murine model that can develop ulcers similar to those observed in humans” Madeddu said. “Then we administered a specific subpopulation of VPCs and, a week after the treatment, we checked what was the overall effect on the ulcers. We observed that the treated lesions had become thinner and smaller compared to the untreated ones, and that they were surrounded by a number of newborn capillaries, indicating that a regeneration process was ongoing”.

A further confirmation that the treatment was efficacious came from another observation: scientists noticed that VPCs stimulated cellular proliferation and inhibited cellular apoptosis, a defensive mechanism which is active also in necrotic tissues that the organism resorts to when it is unable to heal damages. Effective as well was the “conditioned medium”, that is the medium where cells were cultured, after its administration on the lesions. “The medium – underlined Madeddu – contains one or more unidentified factors that stimulate endothelial cell proliferation. Its identification will be critical for the future of this research. These and other future results could set the ground for a targeted therapy, based on the administration of progenitor cells, or in alternative, on the administration of the therapeutic compounds that they secrete.

The European Vascular Genomics Network (EVGN) is the first Network of Excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: EVGN Madeddu VPC ulcers vascular cells

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>