Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vascular progenitor cells used to treat diabetes ulcers

14.12.2006
EVGN scientists identified blood vessels cells that succeed in repairing ulcers caused by diabetes mellitus.

Every 30 minutes a diabetic patient loses the use of his bottom limb due to the ulceration of tissues that degenerates into a necrosis, which is a typical side effect of this disease. For this reason, finding a proper treatment able to arrest this complication is among the priorities of the scientists who study this pathology.

Paolo Madeddu, scientist of the European Vascular Genomics Network (EVGN, www.evgn.org) from the University of Bristol, in a collaborative effort with colleagues from the Istituto Besta in Milano and EVGN scientists from INSERM U441 in Bordeaux, devised an experimental model based on the administration of Vascular Progenitor Cells (VPC). In the laboratory settings the model proved to be effective on ischemic diabetic ulcers.

The research was presented today, December 13th 2006, at the Annual EVGN Conference which is taking place in Toulouse (Dec. 11-14). As they are still preliminary data, the applications of these results to man are still far in the future. However, these extremely encouraging results prompted the scientist to start a whole set of new experiments aimed at the characterization of the compounds secreted by the VPCs, which are responsible for the healing properties on diabetic ulcers.

... more about:
»EVGN »Madeddu »VPC »ulcers »vascular cells

Diabetes is a social disease that affects several million people worldwide. The ischemic ulcers it causes are lesions that damage the deepest layers of tissues, markedly reducing muscles and bones functions. Quite often, they generate infections that aggravate the conditions of already compromised patients. It’s been a few years since scientists developed an interest in the therapeutic potential of stem cells for the treatment of diabetic ulcers. In this study, however, Paolo Madeddu and colleagues used so-called Vascular Progenitor Cells. “These cells have not been fully characterized yet” explained the EVGN scientist “but we know that they display a considerable regenerative potential in the vascular environment. Besides, they are able to counteract the cellular suicide, or apoptosis”.

A major objective of the study was the creation of a diabetic model that allowed the scientists to test the regenerative capacities of VPCs. “We employed a murine model that can develop ulcers similar to those observed in humans” Madeddu said. “Then we administered a specific subpopulation of VPCs and, a week after the treatment, we checked what was the overall effect on the ulcers. We observed that the treated lesions had become thinner and smaller compared to the untreated ones, and that they were surrounded by a number of newborn capillaries, indicating that a regeneration process was ongoing”.

A further confirmation that the treatment was efficacious came from another observation: scientists noticed that VPCs stimulated cellular proliferation and inhibited cellular apoptosis, a defensive mechanism which is active also in necrotic tissues that the organism resorts to when it is unable to heal damages. Effective as well was the “conditioned medium”, that is the medium where cells were cultured, after its administration on the lesions. “The medium – underlined Madeddu – contains one or more unidentified factors that stimulate endothelial cell proliferation. Its identification will be critical for the future of this research. These and other future results could set the ground for a targeted therapy, based on the administration of progenitor cells, or in alternative, on the administration of the therapeutic compounds that they secrete.

The European Vascular Genomics Network (EVGN) is the first Network of Excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: EVGN Madeddu VPC ulcers vascular cells

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>