Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vascular progenitor cells used to treat diabetes ulcers

14.12.2006
EVGN scientists identified blood vessels cells that succeed in repairing ulcers caused by diabetes mellitus.

Every 30 minutes a diabetic patient loses the use of his bottom limb due to the ulceration of tissues that degenerates into a necrosis, which is a typical side effect of this disease. For this reason, finding a proper treatment able to arrest this complication is among the priorities of the scientists who study this pathology.

Paolo Madeddu, scientist of the European Vascular Genomics Network (EVGN, www.evgn.org) from the University of Bristol, in a collaborative effort with colleagues from the Istituto Besta in Milano and EVGN scientists from INSERM U441 in Bordeaux, devised an experimental model based on the administration of Vascular Progenitor Cells (VPC). In the laboratory settings the model proved to be effective on ischemic diabetic ulcers.

The research was presented today, December 13th 2006, at the Annual EVGN Conference which is taking place in Toulouse (Dec. 11-14). As they are still preliminary data, the applications of these results to man are still far in the future. However, these extremely encouraging results prompted the scientist to start a whole set of new experiments aimed at the characterization of the compounds secreted by the VPCs, which are responsible for the healing properties on diabetic ulcers.

... more about:
»EVGN »Madeddu »VPC »ulcers »vascular cells

Diabetes is a social disease that affects several million people worldwide. The ischemic ulcers it causes are lesions that damage the deepest layers of tissues, markedly reducing muscles and bones functions. Quite often, they generate infections that aggravate the conditions of already compromised patients. It’s been a few years since scientists developed an interest in the therapeutic potential of stem cells for the treatment of diabetic ulcers. In this study, however, Paolo Madeddu and colleagues used so-called Vascular Progenitor Cells. “These cells have not been fully characterized yet” explained the EVGN scientist “but we know that they display a considerable regenerative potential in the vascular environment. Besides, they are able to counteract the cellular suicide, or apoptosis”.

A major objective of the study was the creation of a diabetic model that allowed the scientists to test the regenerative capacities of VPCs. “We employed a murine model that can develop ulcers similar to those observed in humans” Madeddu said. “Then we administered a specific subpopulation of VPCs and, a week after the treatment, we checked what was the overall effect on the ulcers. We observed that the treated lesions had become thinner and smaller compared to the untreated ones, and that they were surrounded by a number of newborn capillaries, indicating that a regeneration process was ongoing”.

A further confirmation that the treatment was efficacious came from another observation: scientists noticed that VPCs stimulated cellular proliferation and inhibited cellular apoptosis, a defensive mechanism which is active also in necrotic tissues that the organism resorts to when it is unable to heal damages. Effective as well was the “conditioned medium”, that is the medium where cells were cultured, after its administration on the lesions. “The medium – underlined Madeddu – contains one or more unidentified factors that stimulate endothelial cell proliferation. Its identification will be critical for the future of this research. These and other future results could set the ground for a targeted therapy, based on the administration of progenitor cells, or in alternative, on the administration of the therapeutic compounds that they secrete.

The European Vascular Genomics Network (EVGN) is the first Network of Excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: EVGN Madeddu VPC ulcers vascular cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>