Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA downloads alone

05.02.2002


Two million years ago life looked like this. Four billion years ago it was a different story.
© SPL


The information in DNA can be copied into new molecules without proteins’ help.

Chemists have reproduced the basic process of information transfer central to all life without the catalysts that facilitate it in living cells1.

They show that DNA alone can pass its message on to subsequent generations. Many researchers believe that DNA-like molecules acted thus to get life started about four billion years ago - before catalytic proteins existed to help DNA to replicate.



The experiment, carried out by David Lynn and co-workers at Emory University in Atlanta, Georgia, might create a new basis for the precise synthesis of useful polymer materials. It may even hasten the advent of synthetic biology: the creation of life from scratch.

History repeats itself

Synthetic self-replicating molecules have been made in the lab at least three times before. But in all these cases the replicating molecules were given a substantial helping hand.

Before, each molecule acted as a template on which its copy was constructed from two ready-made halves. In other words most of the information in the copy was present already in the fragments from which it was made. It was rather like reproducing the information in this sentence simply by pasting it together from two already-written halves.

In contrast, Lynn and colleagues paste each letter in place, one by one. They make, not a copy, but a complementary molecule, containing the same information but in a different code. It is rather like making a copy of one of these sentences but translated into French.

In the cell, DNA itself contains two such complementary molecules, each one a chain of molecular units, stuck together in the double helix. When DNA replicates before a cell divides, these complementary strands part and each acts as a template to guide the synthesis of a fresh strand.

Each DNA strand contains all the information needed to make a new strand. There are four different kinds of molecular unit, and the sequence of these along the strand determines the sequence of units assembled in the new strand. Enzymes drive this assembly process.

Stranded

Lynn’s group has found a way to do without the enzymes, so that a single strand of DNA can act as a template for the assembly of its complementary strand. Scientists have achieved this before, but imperfectly: only one of the four types of DNA unit acted as a template, and the complementary strand wasn’t always the same length as the template.

The Emory group uses a new trick to join the components together on a DNA template. The chemical links between successive units in the new strand aren’t like those in DNA itself. Instead they are amide linkages, like those that unite proteins’ molecular units, which are also chain-like molecules laden with information. This makes the assembly of the new strand more accurate.

Amide-linked DNA chains can help units of true DNA to join together. So the researchers hope to achieve the reverse process of templating DNA using amide-linked DNA. This might then enable the two kinds of molecule to support their mutual replication, allowing the possibility of molecular evolution and the appearance of life-like complexity.

References

  1. Li, X., Zhan, Z.-Y. J., Knipe, R. & Lynn, D. G. DNA-catalyzed polymerization. Journal of the American Chemical Society, 124, 746 - 747, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-2.html

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>