Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA downloads alone


Two million years ago life looked like this. Four billion years ago it was a different story.

The information in DNA can be copied into new molecules without proteins’ help.

Chemists have reproduced the basic process of information transfer central to all life without the catalysts that facilitate it in living cells1.

They show that DNA alone can pass its message on to subsequent generations. Many researchers believe that DNA-like molecules acted thus to get life started about four billion years ago - before catalytic proteins existed to help DNA to replicate.

The experiment, carried out by David Lynn and co-workers at Emory University in Atlanta, Georgia, might create a new basis for the precise synthesis of useful polymer materials. It may even hasten the advent of synthetic biology: the creation of life from scratch.

History repeats itself

Synthetic self-replicating molecules have been made in the lab at least three times before. But in all these cases the replicating molecules were given a substantial helping hand.

Before, each molecule acted as a template on which its copy was constructed from two ready-made halves. In other words most of the information in the copy was present already in the fragments from which it was made. It was rather like reproducing the information in this sentence simply by pasting it together from two already-written halves.

In contrast, Lynn and colleagues paste each letter in place, one by one. They make, not a copy, but a complementary molecule, containing the same information but in a different code. It is rather like making a copy of one of these sentences but translated into French.

In the cell, DNA itself contains two such complementary molecules, each one a chain of molecular units, stuck together in the double helix. When DNA replicates before a cell divides, these complementary strands part and each acts as a template to guide the synthesis of a fresh strand.

Each DNA strand contains all the information needed to make a new strand. There are four different kinds of molecular unit, and the sequence of these along the strand determines the sequence of units assembled in the new strand. Enzymes drive this assembly process.


Lynn’s group has found a way to do without the enzymes, so that a single strand of DNA can act as a template for the assembly of its complementary strand. Scientists have achieved this before, but imperfectly: only one of the four types of DNA unit acted as a template, and the complementary strand wasn’t always the same length as the template.

The Emory group uses a new trick to join the components together on a DNA template. The chemical links between successive units in the new strand aren’t like those in DNA itself. Instead they are amide linkages, like those that unite proteins’ molecular units, which are also chain-like molecules laden with information. This makes the assembly of the new strand more accurate.

Amide-linked DNA chains can help units of true DNA to join together. So the researchers hope to achieve the reverse process of templating DNA using amide-linked DNA. This might then enable the two kinds of molecule to support their mutual replication, allowing the possibility of molecular evolution and the appearance of life-like complexity.


  1. Li, X., Zhan, Z.-Y. J., Knipe, R. & Lynn, D. G. DNA-catalyzed polymerization. Journal of the American Chemical Society, 124, 746 - 747, (2002).

PHILIP BALL | © Nature News Service
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>