Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gene dance that promotes atherosclerosis

13.12.2006
Among the key events in the onset and progression of atherosclerosis there is the conversion of macrophages into so-called foam cells, whose presence is associated with plaque instability. Until recently scientists had scarce information about the genetic events that sustain such a transformation.

Now a group from the Bristol Heart Institute, University of Bristol, found that specific changes in gene activity contribute to the process. One of these changes, in particular, increases the production of an enzyme that appears to be directly involved in plaque instability.

The discovery, which was presented yesterday, Dec. 11th, by Graciela B. Sala-Newby during the opening lecture of the Third European Vascular Genomics Network (EVGN) Congress (www.evgn.org) in Toulouse (December 11th to 14th), opens up promising perspectives for the treatment of atherosclerosis, suggesting novel targets to slow down and possibly prevent plaque rupture.

The role of macrophages in atherosclerosis is quite complex and also controversial. These cells take part in the formation of the fibrous cap, a layer of connective tissue composed of cells and collagen; but they also promote plaque rupture. [Plaques are made of lipid, cells and extracellular matrix that accumulate in the vessel wall thus obstructing the blood flow: if they become unstable they undergo surface erosion and release tiny fragments – or thrombi - that clog the vessel lumen, leading to myocardial infarction and stroke.] For this reason, the identification of a trigger that switches the process from cap formation to plaque instability was a long-sought goal for scientists.

... more about:
»FCM »Sala-Newby »atherosclerosis »macrophages

“We hypothesised that the conversion of macrophages into foam cells (FCM) could be due to genetic changes that up- or down- regulate the amount of proteins produced within these cells” explains Sala-Newby. To test this idea the scientists generated in vivo the two cell types and analyzed their gene expression profile. In other words, they quantified the level of activity of specific genes confirming that the corresponding proteins were more/less produced. “Not surprisingly – says the EVGN scientist – we observed that 3 genes are up-regulated (and their proteins overexpressed) in FCM but not in macrophages, and that 11 genes are down-regulated. When we examined the plaque content we found the same situation”.

One of the overly active genes in the FCM produces the enzyme Metalloproteinase-12 (MMP-12), which, as suggested by Sala-Newby, could become a suitable target for future therapies. “MMP-12 is particularly abundant in the deeper layers of the plaques, and its presence strongly correlates with their instability. Finding the way to inhibit its production would give us a useful tool to counteract plaque rupture”.

Poor expression of some genes proved to be critical as well: according to the scientists, the lack of the enzyme arginase which was observed in FCM, for example, is likely to favour matrix degradation and cellular suicide or apoptosis. “Arginase is a natural competitor of Nitric Oxide” comments Sala-Newby. “Its scarcity leads to the increased production of NO by foam cells, and this in turn generates a harmful environment”.

By convening over 130 leading scientists involved in the study of atherosclerosis - a disease that causes about 50% of deaths in Europe (more than cancer) with a burden of 3 billion Euros for direct and indirect costs - the four-days EVGN Conference presents the state-of-the-art in the post-genomics and proteomics research of Cardiovascular Disease.

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: FCM Sala-Newby atherosclerosis macrophages

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>