Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gene dance that promotes atherosclerosis

13.12.2006
Among the key events in the onset and progression of atherosclerosis there is the conversion of macrophages into so-called foam cells, whose presence is associated with plaque instability. Until recently scientists had scarce information about the genetic events that sustain such a transformation.

Now a group from the Bristol Heart Institute, University of Bristol, found that specific changes in gene activity contribute to the process. One of these changes, in particular, increases the production of an enzyme that appears to be directly involved in plaque instability.

The discovery, which was presented yesterday, Dec. 11th, by Graciela B. Sala-Newby during the opening lecture of the Third European Vascular Genomics Network (EVGN) Congress (www.evgn.org) in Toulouse (December 11th to 14th), opens up promising perspectives for the treatment of atherosclerosis, suggesting novel targets to slow down and possibly prevent plaque rupture.

The role of macrophages in atherosclerosis is quite complex and also controversial. These cells take part in the formation of the fibrous cap, a layer of connective tissue composed of cells and collagen; but they also promote plaque rupture. [Plaques are made of lipid, cells and extracellular matrix that accumulate in the vessel wall thus obstructing the blood flow: if they become unstable they undergo surface erosion and release tiny fragments – or thrombi - that clog the vessel lumen, leading to myocardial infarction and stroke.] For this reason, the identification of a trigger that switches the process from cap formation to plaque instability was a long-sought goal for scientists.

... more about:
»FCM »Sala-Newby »atherosclerosis »macrophages

“We hypothesised that the conversion of macrophages into foam cells (FCM) could be due to genetic changes that up- or down- regulate the amount of proteins produced within these cells” explains Sala-Newby. To test this idea the scientists generated in vivo the two cell types and analyzed their gene expression profile. In other words, they quantified the level of activity of specific genes confirming that the corresponding proteins were more/less produced. “Not surprisingly – says the EVGN scientist – we observed that 3 genes are up-regulated (and their proteins overexpressed) in FCM but not in macrophages, and that 11 genes are down-regulated. When we examined the plaque content we found the same situation”.

One of the overly active genes in the FCM produces the enzyme Metalloproteinase-12 (MMP-12), which, as suggested by Sala-Newby, could become a suitable target for future therapies. “MMP-12 is particularly abundant in the deeper layers of the plaques, and its presence strongly correlates with their instability. Finding the way to inhibit its production would give us a useful tool to counteract plaque rupture”.

Poor expression of some genes proved to be critical as well: according to the scientists, the lack of the enzyme arginase which was observed in FCM, for example, is likely to favour matrix degradation and cellular suicide or apoptosis. “Arginase is a natural competitor of Nitric Oxide” comments Sala-Newby. “Its scarcity leads to the increased production of NO by foam cells, and this in turn generates a harmful environment”.

By convening over 130 leading scientists involved in the study of atherosclerosis - a disease that causes about 50% of deaths in Europe (more than cancer) with a burden of 3 billion Euros for direct and indirect costs - the four-days EVGN Conference presents the state-of-the-art in the post-genomics and proteomics research of Cardiovascular Disease.

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: FCM Sala-Newby atherosclerosis macrophages

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>