Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gene dance that promotes atherosclerosis

13.12.2006
Among the key events in the onset and progression of atherosclerosis there is the conversion of macrophages into so-called foam cells, whose presence is associated with plaque instability. Until recently scientists had scarce information about the genetic events that sustain such a transformation.

Now a group from the Bristol Heart Institute, University of Bristol, found that specific changes in gene activity contribute to the process. One of these changes, in particular, increases the production of an enzyme that appears to be directly involved in plaque instability.

The discovery, which was presented yesterday, Dec. 11th, by Graciela B. Sala-Newby during the opening lecture of the Third European Vascular Genomics Network (EVGN) Congress (www.evgn.org) in Toulouse (December 11th to 14th), opens up promising perspectives for the treatment of atherosclerosis, suggesting novel targets to slow down and possibly prevent plaque rupture.

The role of macrophages in atherosclerosis is quite complex and also controversial. These cells take part in the formation of the fibrous cap, a layer of connective tissue composed of cells and collagen; but they also promote plaque rupture. [Plaques are made of lipid, cells and extracellular matrix that accumulate in the vessel wall thus obstructing the blood flow: if they become unstable they undergo surface erosion and release tiny fragments – or thrombi - that clog the vessel lumen, leading to myocardial infarction and stroke.] For this reason, the identification of a trigger that switches the process from cap formation to plaque instability was a long-sought goal for scientists.

... more about:
»FCM »Sala-Newby »atherosclerosis »macrophages

“We hypothesised that the conversion of macrophages into foam cells (FCM) could be due to genetic changes that up- or down- regulate the amount of proteins produced within these cells” explains Sala-Newby. To test this idea the scientists generated in vivo the two cell types and analyzed their gene expression profile. In other words, they quantified the level of activity of specific genes confirming that the corresponding proteins were more/less produced. “Not surprisingly – says the EVGN scientist – we observed that 3 genes are up-regulated (and their proteins overexpressed) in FCM but not in macrophages, and that 11 genes are down-regulated. When we examined the plaque content we found the same situation”.

One of the overly active genes in the FCM produces the enzyme Metalloproteinase-12 (MMP-12), which, as suggested by Sala-Newby, could become a suitable target for future therapies. “MMP-12 is particularly abundant in the deeper layers of the plaques, and its presence strongly correlates with their instability. Finding the way to inhibit its production would give us a useful tool to counteract plaque rupture”.

Poor expression of some genes proved to be critical as well: according to the scientists, the lack of the enzyme arginase which was observed in FCM, for example, is likely to favour matrix degradation and cellular suicide or apoptosis. “Arginase is a natural competitor of Nitric Oxide” comments Sala-Newby. “Its scarcity leads to the increased production of NO by foam cells, and this in turn generates a harmful environment”.

By convening over 130 leading scientists involved in the study of atherosclerosis - a disease that causes about 50% of deaths in Europe (more than cancer) with a burden of 3 billion Euros for direct and indirect costs - the four-days EVGN Conference presents the state-of-the-art in the post-genomics and proteomics research of Cardiovascular Disease.

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: FCM Sala-Newby atherosclerosis macrophages

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>