Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic map offers new tool for malaria research

12.12.2006
Scientists create genome-scale map of genetic variation for malaria parasite; initial use unlocks genes involved in drug resistance

An international research team announced today the completion of a genome-wide map that charts the genetic variability of the human malaria parasite Plasmodium falciparum. Published in the December 10 advance online edition of Nature Genetics, the study reveals striking variation within the pathogen's genome, including an initial catalog of nearly 47,000 specific genetic differences among parasites sampled worldwide. These differences lay the foundation for dissecting the functions of important parasite genes and for tracing the global spread of malaria. Led by scientists at the Harvard School of Public Health and the Broad Institute of MIT and Harvard, together with researchers in Senegal, the work has already unearthed novel genes that may underlie resistance to current drugs against the disease.

"Malaria remains a significant threat to global public health, driven in part by the genetic changes in the parasite that causes the disease," said senior author Dyann Wirth, a professor and chairman of the department of immunology and infectious diseases at the Harvard School of Public Health and the co-director of the Broad Institute's Infectious Disease Initiative. "This study gives us one of the first looks at genetic variation across the entire malaria parasite genome — a critical step toward a comprehensive genetic tool for the malaria research community."

Plasmodium falciparum — the deadliest of the four parasites that cause malaria in humans — kills one person every 30 seconds, mostly children living in Africa. Despite decades of research, the genetic changes that enable it to escape the body's natural defenses and to overcome malaria drugs remain largely unknown.

To gain a broad picture of genetic variability — worldwide and genome-wide — the scientists analyzed more than 50 different P. falciparum samples from diverse geographic locations. This includes the complete genome sequencing of two well-studied samples as well as extensive DNA analyses of 16 additional isolates. The work is one of three large-scale studies of the parasite's DNA that appear together in Nature Genetics, and it represents a collaborative effort among Boston area researchers and a scientific team led by Souleymane Mboup, a professor at the Cheikh Anta Diop University in Senegal where malaria is endemic. "We are grateful for the contributions of our colleagues in Senegal. They are a crucial part of this collaboration," said Wirth.

By comparing the DNA sequences to each other and to the P. falciparum genome sequenced in 2002, the researchers uncovered extensive differences, including ~ 47,000 single letter changes called single nucleotide polymorphisms (SNPs). This represents more than double the expected level of diversity in the parasite's DNA. Although there are probably many more SNPs to be found, this initial survey — like the recent HapMap project in humans — provides a launching point for future systematic efforts to identify parasite genes that are essential to malaria.

"The roles of most of the malaria parasite's genes are still not known," said first author Sarah Volkman, a research scientist at the Harvard School of Public Health. "An important application of this new tool will be in pinpointing the genes that are vital to the development and spread of malaria."

One of the tool's strengths is its ability to reveal evolutionary differences among parasites. This information can shed light on the genes responsible for malaria drug resistance — a major obstacle to adequate control of the disease. Using the genetic map to compare parasites exposed to different anti-malarial drugs, the scientists identified a novel region that is strongly implicated in resistance to the drug pyrimethamine, and also confirmed a region of the genome known to be involved in chloroquine drug resistance.

"The same genetic principles used to study human evolution can provide important clues about malaria," said first author Pardis Sabeti, a postdoctoral fellow at the Broad Institute. "This tool has already yielded insights into the genetic changes that correlate with different drug treatments, pointing us to genes that may contribute to drug resistance."

The map can also define the genetic landscapes of different parasite populations. Applying it to parasites from various continents, the scientists discovered greater DNA variability among P. falciparum samples from Africa relative to those from Asia and the Americas. This knowledge guides the selection of genetic markers to track the transmission of distinct parasites, particularly ones that are virulent or drug resistant. It also lays the groundwork for connecting parasite genes with traits that vary geographically and bolster malaria's foothold in many parts of the world.

"Genomic tools have largely been applied to first-world diseases up to now. This project underscores the power and importance of applying them to the devastating diseases of the developing world," said Eric Lander, one of the study's authors and the director of the Broad Institute. "By joining forces among scientists in the U.S., Africa and elsewhere, it should be possible to rapidly reveal the genetic variation in malaria around the world. Knowing the enemy will be a crucial step in fighting it."

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu
http://www.plasmodb.org

Further reports about: Broad Institute DNA Malaria Universität Harvard parasite

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>