Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geneticists discover genes that make fruit fly hybrids sterile

12.12.2006
While hybrids -- the result of the mating of two different species -- may offer interesting and beneficial traits, they are usually sterile or unable to survive. For example, a mule, the result of the mating of a horse and a donkey, is sterile.

Now, Cornell researchers have made the first identification of a pair of genes in any species that are responsible for problems unique to hybrids. Specifically, the researchers have found two genes from two fruit fly species (Drosophila melanogaster and D. simulans) that interfere with each other, thereby preventing the production of male offspring.

The finding may eventually shed light on what causes lethality or sterility in hybrids in general and, in a larger sense, offers clues to how species evolve from common ancestors.

The research, published in the Nov. 24 issue of Science, focuses on a rarely occurring mutation in a D. melanogaster gene called "Hmr" (Hybrid male rescue) and a similar mutation in a D. simulans gene called "Lhr" (Lethal hybrid rescue) that make these genes nonfunctional. When either of these genes is "turned off" and then crossed with the other fruit fly species, the males survive.

... more about:
»Lhr »evolved »melanogaster »species

"We have found the first example of two genes that interact to cause lethality in a species hybrid," said the paper's senior author, Daniel Barbash, assistant professor in Cornell's Department of Molecular Biology and Genetics.

The finding supports the Dobzhansky-Muller model, a theory from the 1930s that suggests hybrid incompatibilities (such as death or sterility) are caused by genes that have evolved from a common ancestor but diverged in each of the species. More specifically, in the common ancestor, these genes may have worked perfectly well together. But, as each gene evolved in its own species, it began to code for proteins that no longer work in the other species.

In this case, when genes from each fruit fly species were compared with each other, the researchers found the Hmr gene in D. melanogaster and the Lhr gene in D. simulans each evolved much faster than most other genes and diverged due to natural selection, a genetic change due to a pressure that benefits the survival of a species. The researchers would like to learn what these genes normally do within their species in order to understand why they are evolving so fast.

The Dobzhansky-Muller model also proposes that these evolved genes depend on each other to cause hybrid incompatibilities.

However, when Barbash and his colleagues cloned each gene and inserted an Lhr gene from D. simulans into D. melanogaster, the two genes did not interfere with each other in the engineered D. melanogaster strain even though the Lhr and Hmr genes interfere with each other in hybrids.

"This tells us there must be other things involved in the hybrid" that impacts the incompatible pairing of these genes, said Barbash. In future work the researchers hope to determine whether the hybrids die because of additional genes like Hmr and Lhr, or because of more subtle differences between the chromosomes of these two species.

The study was funded by the National Institutes of Health.

| EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Lhr evolved melanogaster species

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>