Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100-million-year-old discovery pushes bees' evolutionary history back 35 million years

12.12.2006
The discovery of a 100-million-year old bee embedded in amber -- perhaps the oldest bee ever found -- "pushes the bee fossil record back about 35 million years," according to Bryan Danforth, Cornell associate professor of entomology.

Danforth and George Poinar of Oregon State University found the bee embedded in amber from a mine in northern Myanmar (Burma).

A report on this major fossil discovery, which the researchers say supports a new hypothesis in bee evolution, was published in the Oct. 27 issue of Science.

Scientists have long believed that bees first appeared about 120 million years ago -- but previous bee fossil records dated back only about 65 million years. Danforth and Poinar's fossil provides strong evidence for a more remote ancestry. The fact that the bee fossil also has some wasp traits suggests an evolutionary link between wasps and bees.

... more about:
»Danforth »Discovery »Evolutionary

In a related study, published in the Oct. 10 issue of the Proceedings of the National Academy of Sciences, Danforth and several colleagues from other institutions examined early bees' structures in combination with bee DNA, producing the largest molecular and morphological study to date on bee family-level phylogeny -- the evolutionary development and diversification of a species. Their goal was to examine the early evolutionary pattern of bees and how their evolution relates to the evolution of flowering plants. Flowering plants are among the most diverse organisms that have ever existed -- Charles Darwin called their origin and diversification an "abominable mystery."

More than 16,000 species of bees, organized into seven families, are known to exist. But scientists disagree on which family is the most primitive. Bees are known to affect plant evolution by spreading pollen and preferring to pollinate some types of plants over others. Because scientists assume that bees have essentially always been around, pollinating plants and "creating" new species, it has been a mystery why the bee fossil record only dated back about 65 million years.

Until now, many researchers believed the most primitive bees stemmed from the family Colletidae, which implies that bees originated in the Southern Hemisphere (either South America or Australia). However, the work of Danforth and his group suggests that the earliest branches of the bee's evolutionary tree originate from the family Melittidae. That would mean that bees have an African origin and are almost as old as flowering plants, which would help explain a lot about the evolutionary diversification of these plants.

Sara Ball is a science writer intern at the Cornell Chronicle.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Danforth Discovery Evolutionary

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>