Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling drug design through ‘unnatural’ selection

Darwin probably never envisaged that, 150 years after ‘Origin of the Species’ was published, scientists would be adapting his ideas to improve drug design, but new research from the University of Leeds is doing just that.

Enzymologist Alan Berry and chemist Adam Nelson used ‘directed evolution’ to adapt a natural enzyme to make analogues of the anti-flu drug, Relenza™. The scientists – from Leeds’ Astbury Centre – created enzymes able to control the three-dimensional construction of the drug-like molecules they produced. Controlling the shape of drugs at this level is essential since many therapeutics only work when in one format and, in some cases – such as Thalidomide – the wrong format can have serious side effects. This is the first time that the technique has been used in this way.

Directed evolution mirrors natural evolution, except that the researchers control which properties are passed on to the next ‘generation’. Dr Berry and Professor Nelson made thousands of copies of their target enzyme, each subtly different to the ‘parent’, and then selected the ones that suited their purpose best. They then repeated the process, until, step by step, they had the final enzymes they were looking for.

Dr Berry said: “Enzymes can be engineered using rational design, but it takes a lot of time to amass enough information to use that approach. With directed evolution, you pick randomly from a huge number of copies of the enzyme to find the properties you want. It’s fully automated and very high throughput. Syntheses of anti-flu drugs are complicated, but using this technique you can cut out some of the process – often generating enzymes which are much more efficient than their natural ‘parents’.”

... more about:
»Design »enzyme

Professor Nelson said: “Directed evolution could help simplify the production process for many drugs already on the market, but it’s unlikely to be used in this way as a new method of synthesis requires approval even for an existing drug. However, in the future, drug design is likely to focus more and more on directed evolution, with a big increase in the number of bio-engineered catalysts created for drug development.”

Dr Berry added: “It is surprising that chemical manufacturers don’t use enzymes more widely as catalysts, as they are environmentally friendly. The main stumbling block has been that enzymes will only carry out very specific reactions. However, we’ve shown that directed evolution allows us to modify natural enzymes as required, opening up the possibility of creating tailored catalysts for a range of industrial chemical syntheses.”

The research was funded by the BBSRC, EPSRC and the Wellcome Trust. The scientists have secured further funding from these agencies to look at adapting enzymes to create more complex sugars, such as di- and tri-saccharides.

Abigail Chard | alfa
Further information:

Further reports about: Design enzyme

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>