Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling drug design through ‘unnatural’ selection

12.12.2006
Darwin probably never envisaged that, 150 years after ‘Origin of the Species’ was published, scientists would be adapting his ideas to improve drug design, but new research from the University of Leeds is doing just that.

Enzymologist Alan Berry and chemist Adam Nelson used ‘directed evolution’ to adapt a natural enzyme to make analogues of the anti-flu drug, Relenza™. The scientists – from Leeds’ Astbury Centre – created enzymes able to control the three-dimensional construction of the drug-like molecules they produced. Controlling the shape of drugs at this level is essential since many therapeutics only work when in one format and, in some cases – such as Thalidomide – the wrong format can have serious side effects. This is the first time that the technique has been used in this way.

Directed evolution mirrors natural evolution, except that the researchers control which properties are passed on to the next ‘generation’. Dr Berry and Professor Nelson made thousands of copies of their target enzyme, each subtly different to the ‘parent’, and then selected the ones that suited their purpose best. They then repeated the process, until, step by step, they had the final enzymes they were looking for.

Dr Berry said: “Enzymes can be engineered using rational design, but it takes a lot of time to amass enough information to use that approach. With directed evolution, you pick randomly from a huge number of copies of the enzyme to find the properties you want. It’s fully automated and very high throughput. Syntheses of anti-flu drugs are complicated, but using this technique you can cut out some of the process – often generating enzymes which are much more efficient than their natural ‘parents’.”

... more about:
»Design »enzyme

Professor Nelson said: “Directed evolution could help simplify the production process for many drugs already on the market, but it’s unlikely to be used in this way as a new method of synthesis requires approval even for an existing drug. However, in the future, drug design is likely to focus more and more on directed evolution, with a big increase in the number of bio-engineered catalysts created for drug development.”

Dr Berry added: “It is surprising that chemical manufacturers don’t use enzymes more widely as catalysts, as they are environmentally friendly. The main stumbling block has been that enzymes will only carry out very specific reactions. However, we’ve shown that directed evolution allows us to modify natural enzymes as required, opening up the possibility of creating tailored catalysts for a range of industrial chemical syntheses.”

The research was funded by the BBSRC, EPSRC and the Wellcome Trust. The scientists have secured further funding from these agencies to look at adapting enzymes to create more complex sugars, such as di- and tri-saccharides.

Abigail Chard | alfa
Further information:
http://www.chem.leeds.ac.uk

Further reports about: Design enzyme

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>