Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New biomarker predicts effectiveness of breast cancer drugs

University of Cincinnati (UC) researchers have identified a new way to predict when anti-estrogen drug therapies are inappropriate for patients with hormone-dependent breast cancer.

The team’s leader, Erik Knudsen, PhD, says the findings could help physicians more accurately predict which tumors will respond to anti-estrogen therapy and improve long-term survival for breast cancer patients.

“If we know upfront that a patient’s cancer will resist traditional anti-estrogen therapies,” Knudsen says, “physicians can immediately begin treating the patient with alternative drugs that are more likely to succeed.”

The UC researchers found that when a pathway controlling cell growth known as the retinoblastoma (RB) tumor suppressor is disrupted or “shut off,” the tumor resists anti-estrogen drugs and the cancer continues to grow in spite of the therapy. They report their findings in the January edition of the Journal of Clinical Investigation.

... more about:
»Knudsen »anti-estrogen »breast »breast cancer

Anti-estrogen drugs such as tamoxifen (Novaldex) are a standard treatment for hormone-dependent breast cancer. They work by blocking the estrogen action, which is required for the proliferation of most breast cancers. Although these drugs are effective in the beginning, says Knudsen, many patients who initially respond to this treatment eventually develop a resistance to it.

“Since evidence shows anti-estrogen drugs will fail in a many patients with estrogen-receptor-positive breast cancer,” says Knudsen, “our research suggests that physicians should examine both estrogen receptor status and RB tumor suppressor status during the initial diagnosis, in order to prescribe the most effective therapy for that specific patient’s cancer.”

According to the National Cancer Institute, about two-thirds of women with breast cancer have estrogen-receptor-positive breast cancer, in which tumor growth is regulated by the natural female hormone estrogen. Previous research has shown that estrogen promotes the growth of most types of breast cancer.

“The RB tumor suppressor is a fundamental regulator of cell proliferation in the body, so we can use its actions as a biomarker for how tumors will respond to anti-estrogen therapy,” explains Knudsen. “It could become the basis for deciding how patients with estrogen-receptor-positive breast cancer are treated clinically.”

In this one-year laboratory study, Knudsen and his team used a specialized technique to disrupt the RB suppression pathway in breast cancer cells and analyzed the impact on tumor growth using animal models. The researchers then compared their results with a large patient record database to determine if the same phenomenon was occurring in patients with estrogen receptor-positive breast cancer. Studies supported their hypothesis that RB may be a critical determinant of whether a tumor will respond to anti-estrogen therapy.

Knudsen stresses that comprehensive clinical research is needed before this new method for predicting the success of anti-estrogen drugs is applied in daily patient care.

Amanda Harper | EurekAlert!
Further information:

Further reports about: Knudsen anti-estrogen breast breast cancer

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>