Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hairpins for Switches

11.12.2006
Artificial RNA ligands differentiate between on and off states of riboswitches

How does an organism know when it must produce a protein and in what amount? Clever control mechanisms are responsible for the regulation of protein biosynthesis. One such type of mechanism, discovered only a few years ago, is riboswitches, which function as a sort of “off” switch for the production of certain proteins.

These could be a useful point of attack for novel antibiotics if it were possible to find drugs that bind to the switches of pathogens and “turn off” the biosynthesis of essential proteins in bacteria or fungi. A team at the interdisciplinary Life and Medical Sciences Center at the University of Bonn has now taken a meaningful step toward a better understanding of riboswitches. Researchers led by Michael Famulok have successfully produced hairpin-shaped RNA molecules that are able to differentiate between riboswitches in the on and off states.

In order to produce a specific protein, a cell first generates a copy of the corresponding gene of the DNA. This blueprint containing the construction plans for the protein is called messenger RNA (mRNA). By using its ribosomes, the cell then reads the mRNA code and synthesizes the protein. Some proteins can activate a “switch” to halt their own synthesis once they are present in sufficient quantity. This is because the mRNA does not only contain the genetic code for the protein but can also contain segments with a switching function. The protein or a closely connected metabolite binds to this riboswitch and changes its spatial structure such that the mRNA segments controlling the protein production can no longer be read off. For example, when the metabolite thiamine pyrophosphate (TPP) binds to the thiM riboswitch of E. coli bacteria, an mRNA segment recognized by the ribosome as the starting point for “reading” the plan is covered up.

... more about:
»RNA »TPP »mRNA »riboswitch

Michael Famulok and his team searched for a probe that can differentiate between off and on. Aptamers are known for their ability to differentiate between different states of proteins. Aptamers are short RNA strands that adopt a specific spatial structure and, like antibodies, selectively bind to specific target molecules. So, why not riboswitches? Over several steps starting from a “library”, a randomly generated large number of highly varied RNA sequences, the scientists selected two short hairpin-shaped aptamers that bind very strongly and specifically to the riboswitch in the “on” position. It turned out that the two hairpins bind to different locations: one to the TPP binding site and the other to a domain responsible for the change in structure of the riboswitch. Both hairpins are crowded when TPP molecules move the riboswitch to the “off” conformation.

Famulok and his team hope to use these aptamers to gain new insights into the function of riboswitches. This could help in the search for a completely new class of antimicrobial agents that block the bacterial thiM riboswitch just like TPP.

Author: Michael Famulok, Universität Bonn (Germany), http://famulok.chemie.uni-bonn.de/members/group.html

Title: RNA Ligands That Distinguish Metabolite-Induced Conformations in the TPP Riboswitch

Angewandte Chemie International Edition, doi: 10.1002/anie.200603166

Michael Famulok | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://famulok.chemie.uni-bonn.de/members/group.html

Further reports about: RNA TPP mRNA riboswitch

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>