Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hairpins for Switches

11.12.2006
Artificial RNA ligands differentiate between on and off states of riboswitches

How does an organism know when it must produce a protein and in what amount? Clever control mechanisms are responsible for the regulation of protein biosynthesis. One such type of mechanism, discovered only a few years ago, is riboswitches, which function as a sort of “off” switch for the production of certain proteins.

These could be a useful point of attack for novel antibiotics if it were possible to find drugs that bind to the switches of pathogens and “turn off” the biosynthesis of essential proteins in bacteria or fungi. A team at the interdisciplinary Life and Medical Sciences Center at the University of Bonn has now taken a meaningful step toward a better understanding of riboswitches. Researchers led by Michael Famulok have successfully produced hairpin-shaped RNA molecules that are able to differentiate between riboswitches in the on and off states.

In order to produce a specific protein, a cell first generates a copy of the corresponding gene of the DNA. This blueprint containing the construction plans for the protein is called messenger RNA (mRNA). By using its ribosomes, the cell then reads the mRNA code and synthesizes the protein. Some proteins can activate a “switch” to halt their own synthesis once they are present in sufficient quantity. This is because the mRNA does not only contain the genetic code for the protein but can also contain segments with a switching function. The protein or a closely connected metabolite binds to this riboswitch and changes its spatial structure such that the mRNA segments controlling the protein production can no longer be read off. For example, when the metabolite thiamine pyrophosphate (TPP) binds to the thiM riboswitch of E. coli bacteria, an mRNA segment recognized by the ribosome as the starting point for “reading” the plan is covered up.

... more about:
»RNA »TPP »mRNA »riboswitch

Michael Famulok and his team searched for a probe that can differentiate between off and on. Aptamers are known for their ability to differentiate between different states of proteins. Aptamers are short RNA strands that adopt a specific spatial structure and, like antibodies, selectively bind to specific target molecules. So, why not riboswitches? Over several steps starting from a “library”, a randomly generated large number of highly varied RNA sequences, the scientists selected two short hairpin-shaped aptamers that bind very strongly and specifically to the riboswitch in the “on” position. It turned out that the two hairpins bind to different locations: one to the TPP binding site and the other to a domain responsible for the change in structure of the riboswitch. Both hairpins are crowded when TPP molecules move the riboswitch to the “off” conformation.

Famulok and his team hope to use these aptamers to gain new insights into the function of riboswitches. This could help in the search for a completely new class of antimicrobial agents that block the bacterial thiM riboswitch just like TPP.

Author: Michael Famulok, Universität Bonn (Germany), http://famulok.chemie.uni-bonn.de/members/group.html

Title: RNA Ligands That Distinguish Metabolite-Induced Conformations in the TPP Riboswitch

Angewandte Chemie International Edition, doi: 10.1002/anie.200603166

Michael Famulok | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://famulok.chemie.uni-bonn.de/members/group.html

Further reports about: RNA TPP mRNA riboswitch

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>