Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein's tail may be flu virus's achilles heel

08.12.2006
Rice, UT find common weakness in strains of human, swine, bird flu

Striking new research from Rice University and the University of Texas at Austin (UT) has revealed a potential new target that drug makers can use to attack several strains of influenza, including those that cause bird flu as well as the common variety that infects millions each flu season.

The research, published online today by Nature, offers tantalizing evidence of a potential drug target in a flu protein called nucleoprotein, or NP. NP plays a vital role in all strains of influenza A, including Hong Kong flu, Spanish flu and bird flu.

The target is NP's long, flexible tail. Biochemists at Rice and UT found that even minor changes to the tail prevented NP from fulfilling one of its roles – linking together into structural columns that the virus uses to transmit copies of itself.

"There is a small binding pocket for the tail loop of the protein that appears to be a promising target for a new class of antiviral drugs," said lead researcher Jane Tao, assistant professor in biochemistry and cell biology. "We know from previous genetic studies that this tail loop is almost identical across strains of influenza A, so drugs that target the tail have a high potential of being effective against multiple strains, including the H5N1 strains. Such new antivirals are especially needed at the moment as some H5N1 viruses are resistant to the flu drug Tamiflu."

... more about:
»Influenza »Virus »droplet »flu

Tao's findings are based on a painstaking series for experiments that revealed the atomic structure of NP. The protein's structure was discerned via X-ray crystallography, a method that allows scientists to discern the three-dimensional placement of atoms in a crystal based upon the diffraction patterns of X-rays that pass through it.

Tao said it was a challenge to growing NP protein crystals. The method used was the hanging drop vapor diffusion method, which involves suspending a liquid droplet of concentrated protein solution on the underside of a glass slide that is sealed inside a jar. As the liquid in the droplets evaporates, the proteins become supersaturated, and in some cases they form tiny crystals of a few hundred microns in size. Tao estimates that postdoctoral research associate Qiaozhen Ye prepared about 1,000 jars, with multiple droplets per jar, to get the 100 or so crystals that were needed for the experiments.

NP is one of only 11 proteins that are encoded by the influenza A genome. One of its main functions is structural. Once the virus has hijacked a host cell, and converted it into a virus-replicating factory, the NPs come together in small rings as building blocks. Many NP rings stack one atop the other in a slightly off-registered fashion, forming long helical-shaped columns. The virus's RNA genome is twisted around this column and shipped out to infect other cells.

"NP has about 500 amino acids and the tail loop contains about 30 of those," Tao said. "We found that a mutation in only one residue out of 30 was enough to prevent the NPs from coming together to form the building blocks for the columns, and without these columns the virus cannot make copies and infect other cells."

Tao said the research also provides clues about NP's role in signaling a cell to begin making copies of the viral genome, and Tao's group is continuing its work with co-author Robert Krug at the University of Texas at Austin to explore the protein's regulatory functions.

The research was funded by.the Welch Foundation, National Institutes of Health, and the Nanoscale Science and Engineering Initiative of the National Science Foundation.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Influenza Virus droplet flu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>