Stretch a DNA Loop, Turn Off Proteins

Biologists have discovered that the physical manifestation of DNA loops are a consequence of many biochemical processes in the cell, such as the regulation of gene expression. In other words, these loops indicate the presence of enzymes or other proteins that are turned on. Now physicists at the University of California, San Diego have discovered that stretching the DNA molecule can also turn off the proteins known to cause loops in DNA.

“We showed that certain enzymes acting on DNA could be switched off or on simply by applying a small amount of mechanical tension across the DNA molecule,” said Douglas Smith, an assistant professor of physics at UCSD who headed the team that published the discovery in the December issue of the Biophysical Journal. “We showed this by mechanically manipulating and stretching single DNA molecules. This switching effect could provide a molecular mechanism for cells to be able to sense and respond to mechanical stresses that they may normally experience. Such stresses could be generated internally by the cells themselves, such as when the cell undergoes changes in shape during the cell cycle, or as external stresses from the environment.”

The amount of tension or stretching that needs to be applied to the molecule is extremely small, Smith added, only one pico-Newton, or one-trillionth of the force generated by the weight of an apple. Other members of the UCSD team were Gregory Gemmen, a physics graduate student, and Rachel Millin, a laboratory assistant. The study was supported by grants from the Burroughs Wellcome Fund, Kinship Foundation and Arnold and Mabel Beckman Foundation.

Media Contact: Kim McDonald, (858) 534-7572
Comment: Douglas Smith, (858) 534-5241

Media Contact

Kim McDonald EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors