Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover initial steps in the development of taste

08.12.2006
Wnt protein required for taste buds and wiring of taste signals to the brain

Of the five senses, taste is one of the least understood, but now researchers at the University of Pennsylvania School of Medicine have come one step closer to understanding how the sense of taste develops. They have pinpointed a molecular pathway that regulates the development of taste buds. Using genetically engineered mice, they discovered that a signaling pathway activated by small proteins called Wnts is required for initiating taste-bud formation. They have also determined that Wnt proteins are required for hooking up the wiring of taste signals to the brain.

Senior author Sarah E. Millar, PhD, Associate Professor in the Departments of Dermatology and Cell and Developmental Biology, Penn postdoctoral fellow Fei Liu, PhD, and colleagues report their findings in the most recent online issue of Nature Genetics. "The developmental biology of taste is underexplored," says Millar of her team's impetus for the study.

The researchers demonstrated that blocking the action of Wnt proteins in surface cells of the developing tongue prevents taste-bud formation, while stimulating Wnt activity causes the formation of excessive numbers of enlarged taste papillae that are able to attract taste-related nerve fibers. This study represents the first genetic analysis of taste-organ initiation in mammals. While these studies were performed in mice, the researchers believe that their findings will also hold true for understanding the basis of taste-bud development in humans.

Taste buds are the sensory organs that transmit chemical stimuli from food and other sources to nerve cells, which convey these signals to the taste centers in the brain. Taste buds sit in the small bumps in the surface and sides of the tongue called papillae.

The signaling pathway activated by Wnt proteins is critical to the development of many organ systems, and its inappropriate activation causes human diseases including colon cancer. In previous studies, Millar and colleagues have shown that this pathway is essential for initiating the formation of hair follicles and mammary glands in mice.

The sites of Wnt signaling are easily visualized in specially engineered transgenic mice, using an enzymatic assay. "We noticed in the tongue that there was this beautiful pattern of blue spots that correspond to the developing taste papillae," says Millar. "This connected the Wnt pathway to their development."

In the present study, the researchers found that in mice in which the actions of Wnt proteins were blocked, taste papilla buds completely failed to develop. Conversely, in mice in which Wnt signaling was over activated, their tongues were covered with many and large papillae and taste buds.

"Unlike most surface epithelial cells, taste buds have characteristics of neurons as well as skin. Like other types of epithelial cells they turn over and regenerate, but they also express chemoreceptors and make synapses with neurons," explains Millar. The group studied how developing taste buds become wired into the nervous system. In early tongue development, neurons enter the tongue epithelium and make synapses with taste bud cells. This study confirmed that taste buds produce signals that attract nerve fibers to them. When taste-bud development was prevented by blocking Wnt signaling, the nerve fibers did not enter the tongue epithelium.

"They don't know where to go on their own," she says.

Millar also mentions that by now understanding the basis for the initiation of taste-papilla formation, the evolution and difference between species in the numbers and patterns of taste buds can be more fully explored. All animals that taste have taste buds, but there are differences, for example humans have more (around 200) taste papillae than mice, and they are arranged in a different pattern.

Future research directions will include determining whether Wnt signaling is also important for the periodic regeneration of taste buds from taste-bud stem cells that occurs throughout life in adult animals. Taste-bud regeneration can be affected by chemotherapy, so understanding this process will have important implications for patient care.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

Further reports about: Development Millar Signaling Wnt Wnt signaling formation taste-bud

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>