Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover initial steps in the development of taste

08.12.2006
Wnt protein required for taste buds and wiring of taste signals to the brain

Of the five senses, taste is one of the least understood, but now researchers at the University of Pennsylvania School of Medicine have come one step closer to understanding how the sense of taste develops. They have pinpointed a molecular pathway that regulates the development of taste buds. Using genetically engineered mice, they discovered that a signaling pathway activated by small proteins called Wnts is required for initiating taste-bud formation. They have also determined that Wnt proteins are required for hooking up the wiring of taste signals to the brain.

Senior author Sarah E. Millar, PhD, Associate Professor in the Departments of Dermatology and Cell and Developmental Biology, Penn postdoctoral fellow Fei Liu, PhD, and colleagues report their findings in the most recent online issue of Nature Genetics. "The developmental biology of taste is underexplored," says Millar of her team's impetus for the study.

The researchers demonstrated that blocking the action of Wnt proteins in surface cells of the developing tongue prevents taste-bud formation, while stimulating Wnt activity causes the formation of excessive numbers of enlarged taste papillae that are able to attract taste-related nerve fibers. This study represents the first genetic analysis of taste-organ initiation in mammals. While these studies were performed in mice, the researchers believe that their findings will also hold true for understanding the basis of taste-bud development in humans.

Taste buds are the sensory organs that transmit chemical stimuli from food and other sources to nerve cells, which convey these signals to the taste centers in the brain. Taste buds sit in the small bumps in the surface and sides of the tongue called papillae.

The signaling pathway activated by Wnt proteins is critical to the development of many organ systems, and its inappropriate activation causes human diseases including colon cancer. In previous studies, Millar and colleagues have shown that this pathway is essential for initiating the formation of hair follicles and mammary glands in mice.

The sites of Wnt signaling are easily visualized in specially engineered transgenic mice, using an enzymatic assay. "We noticed in the tongue that there was this beautiful pattern of blue spots that correspond to the developing taste papillae," says Millar. "This connected the Wnt pathway to their development."

In the present study, the researchers found that in mice in which the actions of Wnt proteins were blocked, taste papilla buds completely failed to develop. Conversely, in mice in which Wnt signaling was over activated, their tongues were covered with many and large papillae and taste buds.

"Unlike most surface epithelial cells, taste buds have characteristics of neurons as well as skin. Like other types of epithelial cells they turn over and regenerate, but they also express chemoreceptors and make synapses with neurons," explains Millar. The group studied how developing taste buds become wired into the nervous system. In early tongue development, neurons enter the tongue epithelium and make synapses with taste bud cells. This study confirmed that taste buds produce signals that attract nerve fibers to them. When taste-bud development was prevented by blocking Wnt signaling, the nerve fibers did not enter the tongue epithelium.

"They don't know where to go on their own," she says.

Millar also mentions that by now understanding the basis for the initiation of taste-papilla formation, the evolution and difference between species in the numbers and patterns of taste buds can be more fully explored. All animals that taste have taste buds, but there are differences, for example humans have more (around 200) taste papillae than mice, and they are arranged in a different pattern.

Future research directions will include determining whether Wnt signaling is also important for the periodic regeneration of taste buds from taste-bud stem cells that occurs throughout life in adult animals. Taste-bud regeneration can be affected by chemotherapy, so understanding this process will have important implications for patient care.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

Further reports about: Development Millar Signaling Wnt Wnt signaling formation taste-bud

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>