Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanishing beetle horns have surprise function

06.12.2006
The function of horned beetles' wild protrusions has been a matter of some consternation for biologists. Digging seemed plausible; combat and mate selection, more likely. Even Charles Darwin once weighed in on the matter, suggesting -- one imagines with some frustration -- the horns were merely ornamental.

In this month's American Naturalist (Dec. 2006) and the Nov. 2006 issue of Evolution, Indiana University Bloomington scientists present an entirely new function for the horns: during their development, Onthophagus horned beetles use their young horns as a sort of can opener, helping them bust out of thick larval shells.

The finding will surprise anyone who assumed hornless Onthophagus adults (usually the females) never form the horns in the first place. They do, the scientists say, but the nubile horn tissue is reabsorbed before the beetles' emergence as adults.

"The formation of horns by beetle pupas that soon lose them just doesn't seem to make sense, so obviously we were intrigued," said IU Bloomington evolutionary biologist Armin Moczek, lead author of both papers. "It appears these pre-adult horns are not a vestigial type of structure, which many of us thought was the case. Instead we have shown these horns actually serve an important function regardless of whether they are resorbed in the pupal stage or maintained into the adult."

... more about:
»Evolutionary »Moczek »Onthophagus »Sex »horned »hornless »larval

Because all the Onthophagus beetles the scientists examined form horns during development, Moczek and colleagues also argue the evolution of ornate horns in the adult beetles may actually have happened second -- that is, some time after their initial evolution as larval molting devices.

In the Evolution report, the scientists examined literature describing the evolutionary relationship of 47 Onthophagus species. They also studied the development of eight beetle species in the laboratory (seven Onthophagus species and one species from the closely related but hornless genus Oniticellus).

The scientists found that all seven Onthophagus species examined in the laboratory develop horns during their larval and pupal development. That finding should instigate a complete revision of the evolutionary history of Onthophagus beetles, which are largely categorized according to their adult shapes with little or no heed given to the quirks of the beetles' development.

Despite the growing presence of developmental biology in evolutionary studies, "Even today, evolutionary theory is very much a theory of adults," Moczek said. "But evolution doesn't morph one adult shape into another. Instead there's an entire lifetime of development that we can't afford to ignore."

Curious as to whether or not the horns had a function, the scientists destroyed the horn tissue of beetle larvae using electrosurgery: minute voltage arcs that permit precise destruction of targeted cells while nearby tissues are left intact and undamaged. With the larval horn tissue destroyed, the scientists observed most larvae were unable to break the husks of their larval head capsules, resulting in young adult hatchlings whose heads were tightly (and lethally) encased within larval helmets. Altered Oniticellus, on the other hand, had no trouble breaking free of their former exoskeletons.

"It may be that these larval horns enabled Onthophagus beetles to grow a thicker carapace," Moczek said. "But it is also possible a thicker carapace made horns necessary. We are left with the commonly asked question in evolutionary developmental biology, 'Which came first"'"

Most scientists have assumed the sexual dimorphism of some Onthophagus beetles was borne of differential growth; flamboyantly horned male beetles grow them, hornless females simply can't. But the American Naturalist report shows that even within sexually dimorphic horned beetle species, both sexes initially form the horns, even if one or both sexes reabsorb the horn tissue sometime before adulthood.

In the American Naturalist report, Moczek examined the development of four Onthophagus species. Both species nigriventris and binodis exhibit typical sexual dimorphism -- adult males have horns, females are hornless. In sagittarius, the sexual dimorphism is reversed. Adult females and males of the fourth species Moczek examined, taurus, are both hornless.

Despite the differences in adult appearance, all four species begin to grow horns as larvae -- regardless of sex, Moczek found. The hornlessness of some adult beetles is therefore not the result of an inability to make horns, Moczek says, but the reshaping or reabsorption of horn tissue before the beetles become adults.

"I think these findings illustrate quite clearly the importance of development to evolutionary biology," Moczek said. "By including studies of your organism's development, at the very least you stand to gain fundamental insights into its biology. More often than not, however, you may prevent yourself from making big mistakes when drawing up evolutionary histories. In this case, I think we did both."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Evolutionary Moczek Onthophagus Sex horned hornless larval

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>