Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanishing beetle horns have surprise function

06.12.2006
The function of horned beetles' wild protrusions has been a matter of some consternation for biologists. Digging seemed plausible; combat and mate selection, more likely. Even Charles Darwin once weighed in on the matter, suggesting -- one imagines with some frustration -- the horns were merely ornamental.

In this month's American Naturalist (Dec. 2006) and the Nov. 2006 issue of Evolution, Indiana University Bloomington scientists present an entirely new function for the horns: during their development, Onthophagus horned beetles use their young horns as a sort of can opener, helping them bust out of thick larval shells.

The finding will surprise anyone who assumed hornless Onthophagus adults (usually the females) never form the horns in the first place. They do, the scientists say, but the nubile horn tissue is reabsorbed before the beetles' emergence as adults.

"The formation of horns by beetle pupas that soon lose them just doesn't seem to make sense, so obviously we were intrigued," said IU Bloomington evolutionary biologist Armin Moczek, lead author of both papers. "It appears these pre-adult horns are not a vestigial type of structure, which many of us thought was the case. Instead we have shown these horns actually serve an important function regardless of whether they are resorbed in the pupal stage or maintained into the adult."

... more about:
»Evolutionary »Moczek »Onthophagus »Sex »horned »hornless »larval

Because all the Onthophagus beetles the scientists examined form horns during development, Moczek and colleagues also argue the evolution of ornate horns in the adult beetles may actually have happened second -- that is, some time after their initial evolution as larval molting devices.

In the Evolution report, the scientists examined literature describing the evolutionary relationship of 47 Onthophagus species. They also studied the development of eight beetle species in the laboratory (seven Onthophagus species and one species from the closely related but hornless genus Oniticellus).

The scientists found that all seven Onthophagus species examined in the laboratory develop horns during their larval and pupal development. That finding should instigate a complete revision of the evolutionary history of Onthophagus beetles, which are largely categorized according to their adult shapes with little or no heed given to the quirks of the beetles' development.

Despite the growing presence of developmental biology in evolutionary studies, "Even today, evolutionary theory is very much a theory of adults," Moczek said. "But evolution doesn't morph one adult shape into another. Instead there's an entire lifetime of development that we can't afford to ignore."

Curious as to whether or not the horns had a function, the scientists destroyed the horn tissue of beetle larvae using electrosurgery: minute voltage arcs that permit precise destruction of targeted cells while nearby tissues are left intact and undamaged. With the larval horn tissue destroyed, the scientists observed most larvae were unable to break the husks of their larval head capsules, resulting in young adult hatchlings whose heads were tightly (and lethally) encased within larval helmets. Altered Oniticellus, on the other hand, had no trouble breaking free of their former exoskeletons.

"It may be that these larval horns enabled Onthophagus beetles to grow a thicker carapace," Moczek said. "But it is also possible a thicker carapace made horns necessary. We are left with the commonly asked question in evolutionary developmental biology, 'Which came first"'"

Most scientists have assumed the sexual dimorphism of some Onthophagus beetles was borne of differential growth; flamboyantly horned male beetles grow them, hornless females simply can't. But the American Naturalist report shows that even within sexually dimorphic horned beetle species, both sexes initially form the horns, even if one or both sexes reabsorb the horn tissue sometime before adulthood.

In the American Naturalist report, Moczek examined the development of four Onthophagus species. Both species nigriventris and binodis exhibit typical sexual dimorphism -- adult males have horns, females are hornless. In sagittarius, the sexual dimorphism is reversed. Adult females and males of the fourth species Moczek examined, taurus, are both hornless.

Despite the differences in adult appearance, all four species begin to grow horns as larvae -- regardless of sex, Moczek found. The hornlessness of some adult beetles is therefore not the result of an inability to make horns, Moczek says, but the reshaping or reabsorption of horn tissue before the beetles become adults.

"I think these findings illustrate quite clearly the importance of development to evolutionary biology," Moczek said. "By including studies of your organism's development, at the very least you stand to gain fundamental insights into its biology. More often than not, however, you may prevent yourself from making big mistakes when drawing up evolutionary histories. In this case, I think we did both."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Evolutionary Moczek Onthophagus Sex horned hornless larval

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>