Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 kills immune cells in the gut that may never bounce back

06.12.2006
People with HIV have been living longer, healthier lives since the development of highly active antiretroviral therapy (or HAART) in 1995.

In fact, most patients on the drug regimen do so well that, according to blood tests, their immune cells appear to return to pre-HIV levels. But two new studies from Rockefeller University and the Aaron Diamond AIDS Research Center (ADARC) show that the immune cells in other body tissues may never rebound, suggesting the need for additional ways to monitor immune system health, and the need for hypervigilance as HIV-positive patients live into their forties, fifties, sixties and beyond. The findings are reported in today's issue of PLoS Medicine and online in the Journal of Virology.

Prior research had shown that, just two to four weeks after contracting HIV-1, the lymphoid tissue layer in the mucous membrane of a patient's gastrointestinal (GI) tract can lose up to 60 percent of its CD4 memory T cells -- immune cells responsible for recognizing invaders and priming other cells for attack. Intrigued, Martin Markowitz, an Aaron Diamond Professor at Rockefeller University and a staff scientist at ADARC, wanted to know whether this loss was reversible, and whether giving patients HAART during the early infection period helped restore these cells to the GI lining the way it restored them to the blood itself.

In a paper published today in PLoS Medicine, Markowitz, Rockefeller researcher and clinical scholar Saurabh Mehandru, and their colleagues report on a trial of 40 HIV-1 positive patients who began treatment with HAART shortly after contracting the virus -- during the acute early infection phase -- and who they followed from one to seven years. The researchers found that although the blood population of CD4 T cells rebounded to normal levels, a subset of the GI tract population remained depleted in 70 percent of their subjects.

... more about:
»CD4 »HIV »HIV-1 »Markowitz »T cells »tract

"If we sample the blood, it only has two percent of the total volume of these cells. It doesn't give us the whole picture," Markowitz says. "But if we actually go into tissue, we see something different. What we see there is eye-opening." After three years of intensive drug therapy that suppresses HIV replication very effectively, most patients still had only half the normal number of CD4+ effector memory T cells in their GI tracts.

"Obviously the first question is, why" What's the mechanism"" Markowitz says.

A second paper, published online in the Journal of Virology, makes some headway toward an answer. By examining the viral burden of DNA and RNA in cells from the GI tract, and comparing that to cells from the peripheral blood, Markowitz, Mehandru and their collaborators determined that the mucosal lining of the GI tract carried a disproportionately heavy viral load. That means that the initial loss of CD4 T cells in that area is partially due to virus activity. But the researchers also found evidence suggesting that there are at least two more ways in which the cells were being killed off. Some of the T cells self-destruct (a process called activation-induced cell death or apoptosis), while some appear to be killed by other cytotoxic immune cells.

"These papers speak strongly to HIV pathogenesis, to HIV therapy, and to understanding how the host and virus interact," Markowitz says. However, the short and long term consequences of the persistence of this depletion remain unknown.

In the clinic, if the loss of CD4 T cells in the GI tract translates into increased incidence of colonic polyps or colorectal cancer, routine monitoring practices will have to be re-examined, with HIV-positive patients receiving colonoscopies earlier and perhaps more frequently than current recommendations allow. In the laboratory, these findings should give researchers another angle with which to approach HIV vaccines.

"What good is a vaccine going to be if you get immune responses in peripheral blood but there's nothing in tissue"" Markowitz says. "It's pretty clear that a successful vaccine will need to address issues surrounding mucosal immunity, which is an area that -- relatively speaking -- has been previously ignored."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: CD4 HIV HIV-1 Markowitz T cells tract

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>