Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 kills immune cells in the gut that may never bounce back

06.12.2006
People with HIV have been living longer, healthier lives since the development of highly active antiretroviral therapy (or HAART) in 1995.

In fact, most patients on the drug regimen do so well that, according to blood tests, their immune cells appear to return to pre-HIV levels. But two new studies from Rockefeller University and the Aaron Diamond AIDS Research Center (ADARC) show that the immune cells in other body tissues may never rebound, suggesting the need for additional ways to monitor immune system health, and the need for hypervigilance as HIV-positive patients live into their forties, fifties, sixties and beyond. The findings are reported in today's issue of PLoS Medicine and online in the Journal of Virology.

Prior research had shown that, just two to four weeks after contracting HIV-1, the lymphoid tissue layer in the mucous membrane of a patient's gastrointestinal (GI) tract can lose up to 60 percent of its CD4 memory T cells -- immune cells responsible for recognizing invaders and priming other cells for attack. Intrigued, Martin Markowitz, an Aaron Diamond Professor at Rockefeller University and a staff scientist at ADARC, wanted to know whether this loss was reversible, and whether giving patients HAART during the early infection period helped restore these cells to the GI lining the way it restored them to the blood itself.

In a paper published today in PLoS Medicine, Markowitz, Rockefeller researcher and clinical scholar Saurabh Mehandru, and their colleagues report on a trial of 40 HIV-1 positive patients who began treatment with HAART shortly after contracting the virus -- during the acute early infection phase -- and who they followed from one to seven years. The researchers found that although the blood population of CD4 T cells rebounded to normal levels, a subset of the GI tract population remained depleted in 70 percent of their subjects.

... more about:
»CD4 »HIV »HIV-1 »Markowitz »T cells »tract

"If we sample the blood, it only has two percent of the total volume of these cells. It doesn't give us the whole picture," Markowitz says. "But if we actually go into tissue, we see something different. What we see there is eye-opening." After three years of intensive drug therapy that suppresses HIV replication very effectively, most patients still had only half the normal number of CD4+ effector memory T cells in their GI tracts.

"Obviously the first question is, why" What's the mechanism"" Markowitz says.

A second paper, published online in the Journal of Virology, makes some headway toward an answer. By examining the viral burden of DNA and RNA in cells from the GI tract, and comparing that to cells from the peripheral blood, Markowitz, Mehandru and their collaborators determined that the mucosal lining of the GI tract carried a disproportionately heavy viral load. That means that the initial loss of CD4 T cells in that area is partially due to virus activity. But the researchers also found evidence suggesting that there are at least two more ways in which the cells were being killed off. Some of the T cells self-destruct (a process called activation-induced cell death or apoptosis), while some appear to be killed by other cytotoxic immune cells.

"These papers speak strongly to HIV pathogenesis, to HIV therapy, and to understanding how the host and virus interact," Markowitz says. However, the short and long term consequences of the persistence of this depletion remain unknown.

In the clinic, if the loss of CD4 T cells in the GI tract translates into increased incidence of colonic polyps or colorectal cancer, routine monitoring practices will have to be re-examined, with HIV-positive patients receiving colonoscopies earlier and perhaps more frequently than current recommendations allow. In the laboratory, these findings should give researchers another angle with which to approach HIV vaccines.

"What good is a vaccine going to be if you get immune responses in peripheral blood but there's nothing in tissue"" Markowitz says. "It's pretty clear that a successful vaccine will need to address issues surrounding mucosal immunity, which is an area that -- relatively speaking -- has been previously ignored."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: CD4 HIV HIV-1 Markowitz T cells tract

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>