Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smashing the time it takes to repair our bones

05.12.2006
New research by Queensland University of Technology is helping scientists better understand how bone cells work and may one day lead to the development of technology that can speed up the time it takes to heal fractured and broken bones.

Dr Hannay said his device replicated the mechanical and electrical stimulants which occurred naturally in the body to repair fractured and broken bones.

"This device is about trying to grow bone tissue in the same environment our body grows bones. I have taken bone cells and put them in the physical environment they would experience in the body, and then varied the stimulants to extract a beneficial environment for tissue growth," he said.

Dr Hannay's research has advanced the understanding of how bone cells can be stimulated to heal factures and has for the first time combined the artificial reproduction of both mechanical and electrical stimulants.

... more about:
»Hannay »fracture »stimulants

"Previous research has looked at both of these stimulants individually, but not together, neglecting the fact that both are occurring in normal healthy bone during fracture healing"

He said by combining the two stimulants, a synergistic effect was produced.

"That means when you apply both the mechanical and electrical stimulants together a result greater than the sum of the two stimulants applied individually is achieved. It creates a greater output," he said.

Dr Hannay said that unfortunately when bones fractured or broke, especially in older people, the healing process could stall.

"We find bones can get half way through the healing process but won't heal properly and with an aging population this is a growing problem for orthopaedic surgeons to accommodate and one that is not easily solved with current methodologies," he said.

"In the future we might be able to make a device utilising these combined stimulants that could be attached to the body and help heal the bone."

Additionally, normal fractures that would otherwise heal successfully could be accelerated with the use of these stimulants.

Dr Hannay said normal fractures in young, healthy people took approximately six to eight weeks to heal.

"It might be possible to significantly reduce the healing time. That would be the goal."

Dr Hannay graduated from QUT with a PhD from the Faculty of Built Environment and Engineering.

Sandra Hutchinson | EurekAlert!
Further information:
http://www.qut.edu.au

Further reports about: Hannay fracture stimulants

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>